Collider Physics

Biplob Bhattacherjee
Centre for High Energy Physics
Indian Institute of science

Sangam@HRI-2024
Harish-Chandra Research Institute 11th March 2024

Many excellent references

Books

Modern Particle Physics: Mark Thomson
Introduction to Elementary Particles: Griffiths
Quantum Field Theory and the Standard Model : Schwartz
QCD and Collider Physics : Ellis, Stirling and Webber

Online

CMS and ATLAS physics webpages
COLLIDER PHENOMENOLOGY : Tao Han(hep-ph:0508097)
Particle data Group https://pdg.Ibl.gov/2021/reviews/rpp2020-rev-passage-particles-matter.pdf
CMS and ATLAS physics webpages
CMS L1 TDR 2020
Towards Jetography : G Salam
Pileup Mitigation by G. Soyez 1801.09721

Deep Inelastic Scattering and Naive Parton Model

Basic Scattering theory

Scattered projectile

Scattering can be described in terms of scattering angle
and impact parameter
θ is the scattering angle
$\mathrm{N}_{\text {target }}=$ Number of target particle per unit area
$A=$ Area of the target assembly
The projectile will visualise the target particle as a circle (2 D view of the 3D targets) :
Effective area of the 2D projection/circle of the target as seen by the projectile $=\sigma$
$N_{\text {inc }}=$ The number of incident particle $\quad N_{s c}=$ The number of scattered particles

$$
N_{s c}=N_{\text {target }} N_{\text {inc }} \sigma
$$

Target assembly

Differential Scattering cross section

Scattered projectile

Total cross section: We have counted the total number of scattered particles, irrespective Of the scattering angles

We can also count the number of scattered particles in a a specific direction
$N_{S c}($ into $d \Omega)=$ The number of scattered particles into the solid angle $d \Omega$ in the Direction theta, phi
$N_{s c}($ into $d \Omega)=N_{\text {target }} N_{\text {inc }} d \sigma($ into $d \Omega)$
$d \sigma($ into $d \Omega)=\frac{d \sigma}{d \Omega} d \Omega$
$\sigma=\int \frac{d \sigma}{d \Omega} d \Omega=\int_{0}^{\pi} \int_{0}^{2 \pi} \sin \theta d \theta d \phi \frac{d \sigma(\theta, \phi)}{d \Omega}$

Rutherford Experiment

Scattering from point-like particle vs extended object

Extended charge distribution: Ze $\rho(r)$

Potential experienced by a particle with charge e located at r

$$
V(R)=-\frac{Z e \cdot e}{4 \pi \epsilon_{0}} \int \frac{\rho\left(R^{\prime}\right)}{\left|R-R^{\prime}\right|} d^{3} R^{\prime}
$$

$$
\frac{d \sigma}{d \Omega} .=\frac{\alpha^{2} Z^{2}}{16 E^{2} \sin ^{4}(\theta / 2)}|F(q)|^{2}
$$

$F(q)=$ Form Factor $=\int e^{i q \cdot R^{\prime} \hbar} \rho\left(R^{\prime}\right) d^{3} R^{\prime}$

Scattering from point-like particle vs extended object

Extended charge distribution : Z e $\rho(r)$

$$
F(q) \sim 1-\frac{q^{2}}{6}<r^{2}>
$$

$<r^{2}>=\int r^{2} \rho(r) d^{3} r \quad$ Square of the charge radius

Potential experienced by a particle with charge e located at r

$$
V(R)=-\frac{Z e . e}{4 \pi \epsilon_{0}} \int \frac{\rho\left(R^{\prime}\right)}{\left|R-R^{\prime}\right|} d^{3} R^{\prime}
$$

$$
\frac{d \sigma}{d \Omega} \cdot=\frac{\alpha^{2} Z^{2}}{16 E^{2} \sin ^{4}(\theta / 2)}|F(q)|^{2}
$$

$$
F(q)=\text { Form Factor }=\int e^{i q \cdot R^{\prime} / \hbar} \rho\left(R^{\prime}\right) d^{3} R^{\prime}
$$

Form Factor => 3D Fourier transform of the charge distribution

For large radius object, form factor decreases quickly with q Pointlike object $F(q)=1$

QED scattering

proton recoil negligible

QED scattering

point-like proton
proton recoil negligible

Consider the scattering of electron from point-like proton

$$
e^{-}\left(p_{1}\right)+p^{+}\left(p_{2}\right) \rightarrow e^{-}\left(p_{3}\right)+p^{+}\left(p_{4}\right)
$$

Elastic scattering, neglect proton recoil
$\theta=$ scattering angle in the Lab frame
$\gamma \quad$ Momentum transfer

$$
q^{2}=\left(p_{1}-p_{3}\right)^{2}=-4 p^{2} \sin ^{2} \frac{\theta}{2}
$$

$$
<|M|^{2}>=\frac{m_{p}^{2} m_{e}^{2} e^{4}}{p^{4} \sin ^{4}(\theta / 2)}\left[1+\beta_{e}^{2} \gamma_{e}^{2} \cos ^{2}(\theta / 2)\right]
$$

Non relativistic electron $E=$ Kinetic energy of electron

$$
\begin{aligned}
& \left.\frac{d \sigma}{d \Omega}\right|_{\text {Rutherford }}=\frac{\alpha^{2}}{16 E_{K}^{2} \sin ^{4}(\theta / 2)} \\
& \text { Note: } \sin ^{4} \frac{\theta}{2} \text { term comes from the propagator }
\end{aligned}
$$

$$
\alpha=\frac{e^{2}}{4 \pi}
$$

Mott Scattering formula
Relativistic electron
$\mathrm{E} \sim \mathrm{p}$

$$
\frac{d \sigma}{d \Omega} \cdot=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}(\theta / 2)} \cos ^{2} \frac{\theta}{2}
$$

QED scattering

$$
\begin{gathered}
e^{-}\left(p_{1}\right)+p^{+}\left(p_{2}\right) \rightarrow e^{-}\left(p_{3}\right)+p^{+}\left(p_{4}\right) \\
\text { Scattering of GeV electron }=>\text { proton recoil cannot be neglected } \\
p_{1}=\left(E_{1}, 0,0, E_{1}\right) \quad p_{2}=\left(m_{P}, 0,0,0\right) \quad p_{3}=\left(E_{3}, 0, E_{3} \sin \theta, E_{3} \cos \theta\right), \quad p_{4}=\left(E_{4}, \overrightarrow{p_{4}}\right) \\
Q^{2}=\left(p_{1}-p_{3}\right)^{2}=-Q^{2} \\
p^{2} \\
p^{+} \\
\frac{d \sigma}{d \Omega}=\frac{q^{2}=4 E_{1}}{4 E_{1}^{2} \sin ^{4}(\theta / 2)} \frac{E_{3}}{E_{1}}\left[\sin ^{2} \frac{\theta}{2}\right.
\end{gathered}
$$

Consider the scattering of relativistic electron from point-like proton

QED scattering

Consider the scattering of relativistic electron from proton

$$
e^{-}\left(p_{1}\right)+p^{+}\left(p_{2}\right) \rightarrow e^{-}\left(p_{3}\right)+p^{+}\left(p_{4}\right)
$$

Scattering of GeV electron => proton structure will be important
Proton structure Proton is not a point like particle :
General form of current: $\bar{u}\left[a \gamma^{\mu}+b \sigma^{\mu \nu} q_{\nu}+c q^{\mu}+d\left(p_{2}+p_{4}\right)^{\mu}\right] u$

$$
i e \gamma^{\mu} \rightarrow\left[a \gamma^{\mu}+b \frac{i \sigma^{\mu \nu}}{2 M_{P}} q_{\nu}\right]
$$

QED scattering

Consider the scattering of relativistic electron from proton

$$
e^{-}\left(p_{1}\right)+p^{+}\left(p_{2}\right) \rightarrow e^{-}\left(p_{3}\right)+p^{+}\left(p_{4}\right)
$$

Scattering of GeV electron => proton structure will be important

Proton structure Proton is not a point like particle :

General form of current: $\bar{u}\left[a \gamma^{\mu}+b \sigma^{\mu \nu} q_{\nu}+c q^{\mu}+d\left(p_{2}+p_{4}\right)^{\mu}\right] u$

$$
i e \gamma^{\mu} \rightarrow\left[a \gamma^{\mu}+b \frac{i \sigma^{\mu \nu}}{2 M_{P}} q_{\nu}\right]
$$

Proton is not a point like particle : Two form factors a and b required
Form factors will depend on Q2

Rosenbluth Formula

$$
a, b \rightarrow G_{E}, G_{M}
$$

$$
\frac{d \sigma}{d \Omega} .=\frac{\alpha^{2}}{4 E_{1}^{2} \sin ^{4}(\theta / 2)} \frac{E_{3}}{E_{1}}\left[\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau} \cos ^{2} \frac{\theta}{2}+2 \tau G_{M}^{2} \sin ^{2} \frac{\theta}{2}\right] \quad \tau=\frac{Q^{2}}{4 m_{P}^{2}}
$$

Form factors

Proton structure

$$
i e \gamma^{\mu} \rightarrow\left[a \gamma^{\mu}+b \frac{i \sigma^{\mu \nu}}{2 M_{P}} q_{\nu}\right]
$$

Measurements of $\mathrm{G}(\mathrm{q})$ by varying electron beam energy and measuring the electron in different scattering angle

$$
G_{E / M}=\frac{a}{\left(a+\frac{Q^{2}}{b^{2}}\right)^{2}}
$$

Relativistic electron proton scattering

$$
e^{-}\left(p_{1}\right)+p^{+}\left(p_{2}\right) \rightarrow e^{-}\left(p_{3}\right)+p^{+}\left(p_{4}\right)
$$

Rosenbluth Formula

$$
\frac{d \sigma}{d \Omega} .=\frac{\alpha^{2}}{4 E_{1}^{2} \sin ^{4}(\theta / 2)} \frac{E_{3}}{E_{1}}\left[\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau} \cos ^{2} \frac{\theta}{2}+2 \tau G_{M}^{2} \sin ^{2} \frac{\theta}{2}\right]
$$

G_{E} and G_{M} can be measured separately from the experiment
At low Q^{2} term proportional to G_{E} dominates

At high energy $\quad G_{E / M} \sim \frac{1}{Q^{4}}$

$$
\frac{d \sigma}{d \Omega} \propto \frac{1}{Q^{6}}\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}
$$

Cross section will decrease rapidly

What happens if we keep increasing the energy of the electron beam?

Inelastic Scattering

$$
e^{-}\left(p_{1}\right)+p^{+}\left(p_{2}\right) \rightarrow e^{-}\left(p_{3}\right)+X\left(p_{4}\right)
$$

$X=$ any particle subject to conservation laws
Example : $X=p, p$ pion, neutron + pion
Number of final state particles can be large

Inelastic Scattering

$X=$ any particle subject to conservation laws Example : $X=p, p$ pion , neutron + pion Number of final state particles can be large

Kinematics
Momentum transfer $q=p_{1}-p_{3}$

$$
Q^{2}=-q^{2}=4 E_{1} E_{3} \sin ^{2} \frac{\theta}{2}
$$

$$
\text { Bjorken } x=\frac{Q^{2}}{2 p_{2} \cdot q}=\cdot \frac{Q^{2}}{Q^{2}+W^{2}-m_{P}^{2}}
$$

4 Momentum Square of the hadronic system $W^{2}=p_{4}^{2}=\left(q+p_{2}\right)^{2}$
The final state X must contain at least one baryon $\mathrm{W}>\mathrm{Mp}$

$$
0 \leq x \leq 1 \quad[x=1 \text { represents elestic limit }]
$$

Two independent variables required to describe the event :
Theory: One can choose Q and x
Experiment: choose E_{3} and θ of the electron
Measurement of double differential scattering cross section

$$
\frac{d^{2} \sigma}{d x d Q^{2}} \text { or } \frac{d^{2} \sigma}{d \theta d E_{3}}
$$

Elastic vs Inelastic Scattering

Inelastic scattering in terms of Q , and x
Elastic scattering in terms of Q
$\frac{d \sigma}{d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[\left(1-y-\frac{m_{P}^{2}}{Q^{2}}\right) f_{2}\left(Q^{2}\right)+\frac{1}{2} y^{2} f_{1}\left(Q^{2}\right)\right]$

$$
y=y\left(Q^{2}\right)
$$

$\frac{d^{2} \sigma}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[\left(1-y-\frac{m_{P}^{2}}{Q^{2}}\right) \frac{F_{2}\left(x, Q^{2}\right)}{x}+y^{2} F_{1}\left(x, Q^{2}\right)\right]$
$F_{1 / 2}\left(Q^{2}, x\right)$ => structure functions
Depends on Q and $x=>$ not the Fourier transform of charge or magnetic moment distribution

Elastic vs Inelastic Scattering

Elastic scattering in terms of Q

$$
\begin{gathered}
\frac{d \sigma}{d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[\left(1-y-\frac{m_{P}^{2}}{Q^{2}}\right) f_{2}\left(Q^{2}\right)+\frac{1}{2} y^{2} f_{1}\left(Q^{2}\right)\right] \quad \frac{d^{2} \sigma}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[\left(1-y-\frac{m_{P}^{2}}{Q^{2}}\right) \frac{F_{2}\left(x, Q^{2}\right)}{x}+y^{2} F_{1}\left(x, Q^{2}\right)\right] \\
F_{1 / 2}\left(Q^{2}, x\right)=>\text { structure functions }
\end{gathered}
$$

Experimental setup

$$
y=y\left(Q^{2}\right)
$$

Depends on Q and $x=>$ not the Fourier transform of charge or magnetic moment distribution
MIT-SLAC collaboration Experiment at SLAC (1967-1973)
Electron beam up to 20 GeV
$E_{1}=$ Energy of electron is fixed
Measure scattered electron at some fixed angle: θ and E_{3} Calculate $Q^{2}=4 E_{1} E_{3} \sin ^{2} \frac{\theta}{2}$

Count the number of scattered electrons in the range $\mathrm{Q}, \mathrm{Q}+\mathrm{dQ}$ and $x, x+d x$ => Measurement of $\frac{d^{2} \sigma}{d x d Q^{2}}$
$x=\frac{Q^{2}}{2 m_{P}\left(E_{1}-E 3\right)} \cdot \rightarrow$ measure x
$y=1-\frac{E_{3}}{E_{1}}$

Parton Model

Observations

1. In the DIS limit F_{1} and F_{2} are almost independent of $\mathrm{Q}^{2} \quad F_{1 / 2}\left(x, Q^{2}\right) \rightarrow F_{1 / 2}(x)$
2. Callan-Gross relation $\quad F_{2}(x)=2 x F_{1}(x)$

Remember: Extended object : Q ${ }^{2}$ dependence in the form factor (point like particle no Q^{2} dependence)

$$
\frac{d \sigma}{d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[(1-y)+\frac{y^{2}}{2}\right]
$$

Parton carries a fraction of the proton momentum $=$ Bjorken x variable
Structure function is related to the momentum distribution of Parton inside the proton

Parton Model

Observations

1. In the DIS limit F_{1} and F_{2} are almost independent of Q^{2}
$F_{1 / 2}\left(x, Q^{2}\right) \rightarrow F_{1 / 2}(x)$
2. Callan-Gross relation $\quad F_{2}(x)=2 x F_{1}(x)$

Remember: Extended object : Q^{2} dependence in the form factor (point like particle no Q^{2} dependence)

Naive Parton Model

Observations

1. In the DIS limit F_{1} and F_{2} are almost independent of $\mathrm{Q}^{2} \quad F_{1 / 2}\left(x, Q^{2}\right) \rightarrow F_{1 / 2}(x)$
2. Callan-Gross relation $\quad F_{2}(x)=2 x F_{1}(x)$

Remember: Extended object : Q Q^{2} dependence in the form factor (point like particle no Q^{2} dependence)
Explanation: electron proton scattering is actually elastic scattering of photon from a point like spin-half particle inside the proton called quark/parton

Parton Model:

Inside the proton, free point like constituent, can be charged or neutral
It carries some fraction of the proton's momentum: x-dependence of the structure functions can be related to the momentum distribution of the partons inside the proton
$q^{p}(x) d x=$ Number of q parton inside the proton with momentum fraction between x and $\mathrm{x}+\mathrm{dx}$

Parton Distribution Function(PDF)

$q^{p}(x) d x=$ Number of q parton inside the proton with momentum fraction between x and $\mathrm{x}+\mathrm{dx}$
Relation between structure functions and pdfs

$$
F_{2}\left(x, Q^{2}\right)=2 x F_{1}\left(x, Q^{2}\right)=x \sum Q_{i}^{2} q_{i}^{p}(x)
$$

Parton Distribution Function(PDF)

$q^{p}(x) d x=$ Number of q parton inside the proton with momentum fraction between x and $\mathrm{x}+\mathrm{dx}$
Relation between structure functions and pdfs

$$
F_{2}\left(x, Q^{2}\right)=2 x F_{1}\left(x, Q^{2}\right)=x \sum Q_{i}^{2} q_{i}^{p}(x)
$$

PDFs can be measured from DIS data

Electron Proton deep inelastic scattering

$$
F_{2}^{p}(x)=x \sum Q_{i}^{2} q_{i}^{p}(x)=x\left[\frac{4}{9} u^{p}(x)+\frac{1}{9} d^{p}(x)\right]
$$

Electron Neutron deep inelastic scattering

$S U(2)$ isospin
 Symmetry

$$
F_{2}^{n}(x)=x\left[\frac{4}{9} u^{n}(x)+\frac{1}{9} d^{n}(x)\right]=x\left[\frac{4}{9} d^{p}(x)+\frac{1}{9} u^{p}(x)\right]
$$

Use both e-P data and e-N data to find $u(x)$ and $d(x)$

Parton Distribution Function(PDF)

$q^{p}(x) d x=$ Number of q parton inside the proton with momentum fraction between x and $\mathrm{x}+\mathrm{dx}$
Relation between structure functions and pdfs

$$
F_{2}\left(x, Q^{2}\right)=2 x F_{1}\left(x, Q^{2}\right)=x \sum Q_{i}^{2} q_{i}^{p}(x)
$$

PDFs can be measured from DIS data

Electron Proton deep inelastic scattering

$$
F_{2}^{p}(x)=x \sum Q_{i}^{2} q_{i}^{p}(x)=x\left[\frac{4}{9} u^{p}(x)+\frac{1}{9} d^{p}(x)\right]
$$

SU(2) isospin

Symmetry

Electron Neutron deep inelastic scattering

$$
F_{2}^{n}(x)=x\left[\frac{4}{9} u^{n}(x)+\frac{1}{9} d^{n}(x)\right]=x\left[\frac{4}{9} d^{p}(x)+\frac{1}{9} u^{p}(x)\right]
$$

Use both e-P data and e-N data to find $u(x)$ and $d(x)$
Protons also contain anti quarks : photon probe cannot discriminate
We need to use W boson probe

Parton Distribution Function(PDF)

$q^{p}(x) d x=$ Number of q parton inside the proton with momentum fraction between x and $\mathrm{x}+\mathrm{dx}$

We need to use W boson probe

Parton distribution Function(PDF)

Protons not only contain quarks but also contain anti-quarks

$$
\mathrm{P}=\text { uud (valance quarks) }
$$

However $u \bar{u}, d \bar{d}$. . can be produced inside the proton (called sea quarks)
This populates the low momentum fraction region (low x region)

$$
\begin{aligned}
\int d x[u+\bar{u}] & \rightarrow \infty \quad \int d x[u-\bar{u}]=2 \\
& \int \sum_{i} x q_{i}(x)=1 \quad \text { Momentum conservation }
\end{aligned}
$$

Sum over quarks ~ 0.55 => about 50% of the total momentum missing

Fixed Target and Collider Experiments

Fixed Target Experiment

Fixed target : $\quad \overrightarrow{p_{2}}=0 \quad$ For $m_{1} \sim 0$ and $E_{1} \gg m_{2} \quad \sqrt{s} \sim \sqrt{2 E_{1} m_{2}}$

Example

$$
m_{2}=1 \mathrm{GeV}, \quad E_{1}=14000 \mathrm{GeV}=14 \mathrm{TeV}, \quad m_{1} \sim 0
$$

$$
\sqrt{s} \sim 100 \mathrm{GeV}
$$

Very light particle production is still possible in fixed target experiment (Beam dump experiments)

Collider Experiment

Collision :

$$
\begin{aligned}
& p_{1}=\left(E_{p}, \vec{p}\right), \quad p_{2}=\left(E_{p},-\vec{p}\right) \\
& m_{1}=m_{2} \sim 0 \quad \cos (\theta)=-1.0 \quad \text { (head on) } \\
& \quad \sqrt{s}=2 E_{p} \quad \text { (head on) }
\end{aligned}
$$

Collider Experiment

Electron positron collider :

> zero charge, zero lepton number, energy profile well understood beam polarisation possible, reasonably low background Large synchrotron radiation \longrightarrow linear collider
energy of colliding partons are unknown: it can scan a wide energy range —> particularly useful for the search of new particle of unknown mass

Multiple final states possible (different spin, charge ...)
High luminosity option available
huge backgrounds, additional challenges including multiple interaction, pile-up ...

Hadron Collider

partons carry much less energy than the protons
parton 4 momentum in the lab frame

Hadron Collider

Parton system moves in the LAB frame with 4 Momentum $\left(\left(x_{1}+x_{2}\right) E, 0,0,\left(x_{1}-x_{2}\right) E\right)$ or with speed $\frac{x_{1}-x_{2}}{x_{1}+x_{2}}$

$$
\text { Proton Proton } \mathrm{CM} \text { energy }=2 \mathrm{E}=\sqrt{S} \text {, In the parton CMframe }=s=x_{1} x_{2} S
$$

Express 4 momentum of a particle in terms of rapidity (y), transverse momentum $\left(\mathrm{p}_{\mathrm{T}}\right)$ and azimuthal angle (phi) about the z axis (collision axis)

$$
y=\frac{1}{2} \ln \frac{E+P_{z}}{E-P_{Z}}, \quad p_{T}=\sqrt{p_{x}^{2}+p_{y}^{2}}
$$

transverse momentum $\left(\mathrm{p}_{\mathrm{T}}\right)$ and azimuthal angle (phi) about the z axis (collision axis) are invariant under longitudinal boost, rapidity changes only by a constant

4 Momentum of a particle $p^{\mu}=\left(E_{T} \cosh y, p_{T} \cos \phi, p_{T} \sin \phi, E_{T} \sinh y\right)$

$$
E_{T}=\sqrt{p_{T}^{2}+m^{2}}
$$

Production Cross section

Hard scattering cross section

$$
\sigma(A B \rightarrow F X)=\sum_{a, b} \int d x_{1} d x_{2} P_{a / A}\left(x_{1}, Q^{2}\right) P_{b / B}\left(x_{2}, Q^{2}\right) \stackrel{\text { Parton leve }}{\hat{\sigma}(a b \rightarrow F)}
$$

Scattering of two hadrons A and B to produce a final state particle X $\mathrm{Pa} / \mathrm{A}=>$ probability of finding a Parton a inside the hadron A

Question: Parton distribution function also depends on Q : Why ?

Production Cross section

MSTW 2008 NLO PDFs (68\% C.L.)
REF: 0901.0002

Figure 1: MSTW 2008 NLO PDFs at $Q^{2}=10 \mathrm{GeV}^{2}$ and $Q^{2}=10^{4} \mathrm{GeV}^{2}$.

Example : $p p \rightarrow Z$
Multiple parton level processes : $u \bar{u} \rightarrow Z, d \bar{d} \rightarrow Z, s \bar{s} \rightarrow Z \ldots$

Example : $p p \rightarrow h$
Dominant parton level processes : $g g \rightarrow h$

Production Cross section : 14 TeV vs 100 TeV

REF: hep-ph:1607.01831

For 125 GeV Higgs boson gain ~ 150 in the ggF channel and ~ 400 in the di-Higgs, ~ 500 in the ttH

Event in hadronic collision

FIG. 4: An illustrative event in hadronic collisions.

Shower and fragmentation

Quark/gluon to hadrons : cannot be calculated (must be measured like PDF in experiment)

Parton distribution function
Fragmentation function $D_{k}^{h}\left(z, Q^{2}\right)$

Jets and substructure

Jet formation

Jets : collimated spray of particles comes from the shower and and hadronization of quark/gluon

Jets : link between parton and colourless stable hadrons

Basic idea : construct a cone which captures all the hadrons from the parton

Small Jet vs Large Jet radius

Narrow cone

Large cone

Capture
All the particles

Contaminated by Underlying events and Pileup

Sequential Jet formation algorithm (IRC safe)

Starts with N stable particles
Distance variable between two particles : $d_{i j}=\min \left(p_{T i}^{a}, p_{T j}^{a}\right) \frac{R_{i j}^{2}}{R^{2}}$
Angular separation between to particles $R_{i j}^{2}=\left(\eta_{i}-\eta_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}$
Distance variable(momentum distance from beam axis) : $d_{i B}=p_{T i}^{2}$

Procedure
Two parameters : R and a
Find the minimum of $\left\{d_{i j}, d_{i B}\right\}$ for the entire set of N particles
If some $d_{i j}$ is minimum => combine i and j particle into one particle (number of particle is reduced to $\mathrm{N}-1$)

If some $d_{i B}$ is minimum $=>i^{\text {th }}$ particle is declared as a jet and removed from the list
Iterate until all particles are exhausted(inclusive) or a certain number of jets are formed(exclusive)

Kt anti-Kt and CA algorithms

$$
\begin{gathered}
d_{i j}=\min \left(p_{T i}^{2}, p_{T j}^{2}\right) \frac{R_{i j}^{2}}{R^{2}} \\
d_{i B}=p_{T i}^{2}
\end{gathered}
$$

$$
\begin{gathered}
d_{i j}=\min \left(\frac{1}{p_{T i}^{2}}, \frac{1}{p_{T j}^{2}}\right) \frac{R_{i j}^{2}}{R^{2}} \\
d_{i B}=\frac{1}{p_{T i}^{2}}
\end{gathered}
$$

$$
d_{i j}=\frac{R_{i j}^{2}}{R^{2}}
$$

Kt algorithm ($a=2$)

Anti-Kt algorithm ($\mathrm{a}=-2$)

Cambridge Aachen algorithm In=n)

Non Isolated Objects

LHC current bounds indicate that the new particles will possibly be heavy Assumption: New particles will be produced at the 14 TeV LHC

Jet substructure

LHC current bounds indicate that the new particles will possibly be heavy Assumption: New particles will be produced at the 14 TeV LHC

> The decay of new heavy particle to SM particles may give large Lorentz boost

Jet substructure

LHC current bounds indicate that the new particles will possibly be heavy
Assumption: New particles will be produced at the 14 TeV LHC

The decay of new heavy particle to SM particles

 may give large Lorentz boost

Jet substructure

LHC current bounds indicate that the new particles will possibly be heavy
Assumption: New particles will be produced at the 14 TeV LHC

The decay of new heavy particle to SM particles may give large Lorentz boost

low p_T top

inside high p_T top jet

Jet substructure: Another Example

multijet signal, large QCD background (hopeless ??)

Jet substructure: Another Example

neutralino jet with 3 substructures

Many techniques: filtering, grooming

Jet substructure by accident

New physics Search: Resonance

The decay products of the new particle are visible SM particles

New physics Search: Cascade

R-parity conserved

Lightest SUSY particle is stable
(dark matter
candidate)
Missing transverse
energy

Detector

Electron
$\xrightarrow[\text { TRACKER ECAL HCAL muon spectrometer }]{\text { Track + energy deposit in ECAL }}$

Muon

$\xrightarrow[\text { Track }+ \text { muon spectrometer }]{\text { TRACKER }}$

Photon

Jets

b-Jets

decay length of an unstable particle $\quad \beta \gamma c \tau$

impact parameter is important

Tau-Jets

Tau decay modes
The branching ratio tau decays :
~23\% for decay into a charged pion, a neutral pion, and a tau neutrino; 11% for decay into a charged pion and a tau neutrino;
9% for decay into a charged pion, two neutral pions, and a tau neutrino;
9% for decay into three charged pions and a tau neutrino;
3% for decay into three charged pions, a neutral pion, and a tau neutrino; 1% for decay into three neutral pions, a charged pion, and a tau neutrino.
hadronic branching fraction ia about 65%

Objects should be isolated: to reject QCD background

Energy deposited (excluding the object)inside the isolation cone should be small

Missing Energy

$$
e^{-} e^{+} \rightarrow A B C D
$$

C and D are invisible particles
D
A

electron and a positron collide head-on at equal speeds in the lab frame
net momentum of outgoing particles indicates a missing energy
(Typical signal of R parity conserving SUSY)

Missing Transverse Energy

$$
p p \rightarrow A B C D
$$

C and D are invisible particles

partons collide head-on with unequal speeds in the lab frame

Net momentum in the transverse direction of outgoing particles indicates invisible particles (Typical signal of R parity conserving SUSY)

