Collider Physics

Biplob Bhattacherjee Centre for High Energy Physics Indian Institute of science

Sangam@HRI-2024 **Harish-Chandra Research Institute** 11th -12th March 2024

Many excellent references

Books

Modern Particle Physics: Mark Thomson Introduction to Elementary Particles: Griffiths **Quantum Field Theory and the Standard Model : Schwartz QCD** and Collider Physics : Ellis, Stirling and Webber

Online

CMS and ATLAS physics webpages **COLLIDER PHENOMENOLOGY : Tao Han(hep-ph:0508097)** Particle data Group <u>https://pdg.lbl.gov/2021/reviews/rpp2020-rev-passage-particles-matter.pdf</u> Particle data Group https://pdg.lbl.gov/2023/AtomicNuclearProperties/adndt.pdf CMS and ATLAS physics webpages **CMS L1 TDR 2020** Towards Jetography : G Salam Pileup Mitigation by G. Soyez 1801.09721

Tracking and Calorimetry

Tracking

A charged particle bends in the magnetic field=> momentum can be measured from the bending Need to measure the position of the charged particle at different points => reconstruct the track The position measurement should not reduce the energy of the charged particle

Tracking

A charged particle bends in the magnetic field=> momentum can be measured from the bending Need to measure the position of the charged particle at different points => reconstruct the track The position measurement should not reduce the energy of the charged particle

Tracker volume

Transverse momentum of The particle

Magnetic field (z direction)

Radius of Curvature = $r = \frac{PT}{0.3B}$

Suppose a charged particle is detected at P1,P2,P3

 $\alpha \simeq -$

- B = Magnetic field in Tesla
 - L = The distance between P1 and P3 *r* = Radius of the circle in Meter
- p_T = Momentum of the charged particle = 0.3 B r
- S = Depth of the arc, called Sagitta in Meter

Example : for $p_T = 1$ GeV, L= 1 m and B= 1 T Sagitta (s) is ~ 3.8 cm

Suppose a charged particle is detected at P1,P2,P3

B = Magnetic field in Tesla

L = The distance between P₁ and P₃ *r* = Radius of the circle in Meter

 p_T = Momentum of the charged particle = 0.3 B r

S = Depth of the arc, called Sagitta in Meter

$$r\left[1 - \left(1 - \frac{1}{2}\frac{\alpha^2}{4}\right)\right] = R\frac{\alpha^2}{8} = \frac{0.3BL^2}{8p_T}$$

Momentur

Suppose three points are used to measure the track

$$s = x_2 - \frac{x_1 + x_3}{2}$$

m resolution $\frac{\sigma_{PT}}{p_T} \propto \frac{\sigma}{s} \propto \frac{\sigma 8p_T}{0.3BL^2}$

 σ is the uncertainty associated with the position measurement

Momentum

CMS uses stronger magnetic field than ATLAS ATLAS uses bigger L than CMS Resolution degrades with the momentum

Suppose three points are used to measure the track

$$s = x_2 - \frac{x_1 + x_3}{2}$$

in resolution $\frac{\sigma_{PT}}{p_T} \propto \frac{\sigma}{s} \propto \frac{\sigma 8p_T}{0.3BL^2}$

 σ is the uncertainty associated with the position measurement

For better measurement we need small σ , large B and large L

Suppose three points are used to measure the track

Momentum

- - ATLAS uses bigger L than CMS
 - Resolution degrades with the momentum

Charged particle inside the thick material undergoes multiple scatterings : This increases the error in the measurement of the Sagitta : Low Z, high radiation length and thin material reduces this effect

$$s = x_2 - \frac{x_1 + x_3}{2}$$

in resolution $\frac{\sigma_{PT}}{p_T} \propto \frac{\sigma}{s} \propto \frac{\sigma 8p_T}{0.3BL^2}$

 σ is the uncertainty associated with the position measurement

For better measurement we need small σ , large B and large L

CMS uses stronger magnetic field than ATLAS

Layer V Layer IV Layer III Layer II

Layer I

L
L
L
L
L

Layer V Layer IV Layer III Layer I Layer I

Iterative track finding algorithms (time consuming)

Iterative track finding algorithms (time consuming) track fitting algorithms => Momentum measurement Efficiency increases with the number of hits

Addition of 4th layer in CMS and ATLAS tracker

Calorimetry

Calorimeter measures energy of charged and neutral hadrons(HCAL), electron and photon (ECAL) => destructive measurement unlike tracker

- Interaction of particle with the detector generates shower => identification of particle

Segmentation helps measure the position / direction of the particle

Calorimetry

Active material: which measures the shower energy

Passive material: which causes the particle to shower(high Z material)

Two Types of calorimeters :

Homogeneous: single active material

Advantage : excellent energy resolution

Disadvantage: costly **Example:** CMS ECAL

Sampling: alternative layers of active and passive materials

Advantage: optimal choice of absorber and active material possible, can be made compact

Cheap passive material

Disadvantage: Only some of the energy is deposited in the detector, energy resolution worse than homogeneous calorimeter

Example: CMS HCAL, ATLAS ECAL and HCAL

Electromagentic Shower

Incoming particle loses energy=> production of secondary particle

Cascade of secondary electron/positron and photons produced due to the interaction of the particle with the detector material.

Electromagentic Shower

Incoming particle loses energy=> production of secondary particle

particle with the detector material.

Bremsstrahlung: incoming electron emits photon in the coulomb field of the nuclei (proportional to energy and m⁻²)

- Cascade of secondary electron/positron and photons produced due to the interaction of the
- **Ionisation. :** emission of electrons from the detector material atoms (dominant at low energy)

Electromagentic Shower

Incoming particle loses energy=> production of secondary particle

particle with the detector material.

Bremsstrahlung: incoming electron emits photon in the coulomb field of the nuclei (proportional to energy and m⁻²)

$$\frac{dE}{dx} = \frac{E}{X_0}$$

Radiation length: The average distance over which the electron loses its 63% of the energy inside the detector $X_0 \propto \frac{1}{72}$ (For air X~ 30000 cm, lead = 0.5 cm) material

- Cascade of secondary electron/positron and photons produced due to the interaction of the
- **Ionisation.**: emission of electrons from the detector material atoms (dominant at low energy)

, Xo is called Radiation length

Electromagentic Shower For photon

Photo-electric effect : it dominates in the low energy range

 $\sigma_{photoelectric} \propto \frac{1}{E^{3.5}}$

Compton Scattering: dominates in the mid energy range

 $\sigma_{compton} \sim rac{ln(E)}{F}$

Pair production: dominates in the high energy range (above 1.02 MeV) $\gamma \rightarrow e^+e^-$ (in the vicinity of the atomic nucleus)

 $\sigma_{pair} \propto AX_0$

Electrons are emitted Mostly isotropically

Electron and positron Pair mostly moves in The direction of the photon

Electromagnetic Shower

Below a threshold energy ionisation dominates , Number of secondary

particles reduced and finally stopped

Electromagnetic Shower

Shower development is determined by radiation length, it takes an absorber of about 25 radiation length to contain most of the shower Moeller radius : The transverse development of the shower is determined by Moliere radius

99% of the energy is contained in cylinder of radius $5R_M$

Below a threshold energy ionisation dominates, Number of secondary particles reduced and finally stopped

 $R_M \propto X_0$

Hadronic Shower

Very similar to the EM shower, more complex => many more processes Elastic scattering : hadron + nucleus \rightarrow hadron + nucleus (no shower produced) Inelastic scattering : hadron + nucleus $\rightarrow \pi + \pi + ... + nucleus^*$ etc. Charge exchange processes: $\pi^- + n \rightarrow \pi^0 + p$ Nuclear spallation : high energy nucleus hits a nucleus, a large number of particles and debris nucleus are emitted.

Hadronic Shower

- Elastic scattering : hadron + nucleus \rightarrow hadron + nucleus (no shower produced)
- Inelastic scattering : hadron + nucleus $\rightarrow \pi + \pi + ... + nucleus^*$ etc.
- Charge exchange processes: $\pi^- + n \rightarrow \pi^0 + p$
- nucleus are emitted.
- Non detectable part: nuclear binding energy, neutrinos etc.
- (event by event)

 $\lambda_{Interaction \ length} \sim 35 \ A^{1/3} \ in \ cm$

Very similar to the EM shower, more complex => many more processes

Nuclear spallation : high energy nucleus hits a nucleus, a large number of particles and debris

Shower has two component : hadronic and electromagnetic (photons also come from neutral

Pion decay, nuclear de-excitations) => large fluctuations of EM and hadronic components

Shower development determined by mean free length between subsequent inelastic collisions

- Inelastic collision stops below prion production energy threshold => ionisations starts
- low energy neutron etc.)
- some part is compensated by neutron capture (fission) -> release of energy

Hadronic shower has more depth than EM shower Mean fraction of EM showers $\propto ln(E)$

CMS and ATLAS Calorimeter

ATLAS

ECAL

Homogeneous calorimeter CMS PbWO₄ crystal $X_0 \sim 0.9$ cm and $R_M \sim 2.2$ cm **ECAL** 23 cm long crystal with a front face 2.2 cm X 2.2 cm

> Sampling calorimeter Active material: Liquid Argon and absorber: Pb $24X_0$ total length Longitudinal segmentation

CMS and ATLAS HCAL : sampling type

3 X 3 or 5X 5 crystals contain the energy of the electron/photon

Energy resolution

$$\frac{\sigma}{E} = \left(\frac{\sigma}{E}\right)_{stat} + \left(\frac{\sigma}{E}\right)_{instru} + \left(\frac{\sigma}{E}\right)_{sys}$$

Accuracy in the energy measurement in the Calorimeter

Energy resolution

$$\frac{\sigma}{E} = \left(\frac{\sigma}{E}\right)_{stat} + \left(\frac{\sigma}{E}\right)_{instru} + \left(\frac{\sigma}{E}\right)_{sys}$$

Energy proportional to the number of secondary particles N

Accuracy in the energy measurement in the Calorimeter

Noise independent of energy

$$\left(\frac{\sigma}{E}\right)_{syst} = c$$

Some systematics increases with Energy (non uniformity of the calorimeter)

Additional error comes from the sampling

Muon Detection

Minimum Ionizing particle : whose energy loss is close to minimum

Muon Detection

Minimum Ionizing particle : whose energy loss is close to minimum

Muon in 100 cm thick Iron block

$$\left\langle \frac{dE}{dX} \right\rangle \Big|_{muon} = 1.5 \text{MeV}g^{-1}cm^2$$

$$\rho(Fe) = 7.87 g cm^{-3}$$

Energy loss = $1.5 \times 100 \times 7.8 \sim 1$ GeV

Muon penetrates through ECAL and 1000 HCAL Significant bremsstrahlung from Muon starts with energy above 1 TeV 10000

Muon Detection

Minimum Ionizing particle : whose energy loss is close to minimum

Muon in 100 cm thick Iron block

$$\left\langle \frac{dE}{dX} \right\rangle \Big|_{muon} = 1.5 \text{MeV}g^{-1}cm^2$$

$$\rho(Fe) = 7.87 g cm^{-3}$$

Energy loss = $1.5 \times 100 \times 7.8 \sim 1$ GeV

Muon penetrates through ECAL and 1000 HCAL

New Physics searches : Variables

New physics Search: Resonance

di-muon invariant mass distribution

New physics Search: Cascade

jet

leptons

Final state

Jets + leptons + missing transverse energy

R- parity conserved

Lightest SUSY particle is stable (dark matter candidate) Missing transverse energy

MET

Signal vs Background : Cuts

Define variables which can discriminate signal and background

Some numbers SM cross sections (background) QCD(pt>100 GeV) = 2000000 pb W + jets = 20000 pb (W decays to electron) top pair =900 pb

SUSY cross sections (signal) Gluino pair (mass = 1 TeV) ~ 450 fb stop pair(mass = 1TeV) ~ 10 fb

Signal vs Background : Cuts

Typical variable for SUSY : missing transverse energy, effective mass

Define variables which can discriminate signal and background

Signal vs Background : Cuts

It is not always possible to construct observables which can easily discriminate signal from backgrounds

SUSY search: Multi-jet + MET

ATLAS-CONF-2017-022

Targeted signal	$\tilde{g}\tilde{g}, \tilde{g} \to q\bar{q}\tilde{\chi}_1^0$						
Requirement	Signal Region [Meff-]						
	4j-1000	4j-1400	4j-1800	4j-2200	4j-2600	4j-3000	5j-1700
$E_{\rm T}^{\rm miss} [{\rm GeV}] >$		250					
$p_{\rm T}(j_1) [{\rm GeV}] >$	200				700		
$p_{\rm T}(j_4) [{\rm GeV}] >$	100 150			50	50		
$p_{\rm T}(j_5) [{\rm GeV}] >$	_				50		
$ \eta(j_{1,2,3,4}) <$	1.2 2.0				—		
$\Delta \phi(\text{jet}_{1,2,(3)}, \vec{E}_{\text{T}}^{\text{miss}})_{\text{min}} >$	0.4						
$\Delta \phi(\text{jet}_{i>3}, \vec{E}_{T}^{\text{miss}})_{\text{min}} >$	0.4				0.2		
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$	0.3	0.3 0.25			0	0.2	
Aplanarity >	0.04				—		
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1000	1400	1800	2200	2600	3000	1700

also see http://slac.stanford.edu/pubs/slacreports/reports19/slac-r-504.pdf

SUSY search: Multi-jet + MET

Final state : Multiple jets + MET

MadGraph5_aMC@NLO

MadGraph5_aMC@NLO

Other subdominant backgrounds VV + jets , single top

MadGraph5_aMC@NLO

Simple Illustration

squark pair production (Mass = 1 TeV) using Pythia-6 squark to quark + neutralino (mass = 100 GeV) **Delphes 3 simulation** backgrounds: Z+ 2 jets, QCD dijet (This is only for illustration)

$pp \rightarrow \tilde{q}\tilde{q}$ $\tilde{q} \rightarrow q \chi_1^0$

 $p_T^{j_1} \ge 100 \ GeV \ p_T^{j_2} \ge 100 \ GeV$

MET distribution

E^{miss}_t [GeV]

squark pair production (Mass = 1 TeV) using Pythia-6 squark to quark + neutralino (mass = 100 GeV) **Delphes 3 simulation**

Plot Credit : Rahool Kumar Barman

MET from QCD

ideal situation

 $p_x^{j_2} = -564 \text{ GeV}, \quad p_y^{j_2} = -193 \text{ GeV}, \quad p_T^{j_2} \sim 596 \text{ GeV}$

perfectly balanced di-jet MET~ 0 GeV

$$\begin{aligned} p_x^{visible} &= p_x^{j_1} + p_x^{j_2} = 562 - 564 = -2 \text{ GeV} \\ p_y^{visible} &= p_y^{j_1} + p_y^{j_2} = 195 - 193 = -2 \text{ GeV} \\ p_y^{missing} &= - p_y^{visible} \\ p_x^{missing} &= - p_x^{visible} \\ p_T^{missing} &= - p_x^{visible} \\ \end{aligned}$$

MET from QCD

jet 2 is badly mis-measured

mis-measured di-jet (multi-jet) large MET is not impossible

Red : QCD , Black: signal

$$GeV p_T^{j_2} \ge 100 \ GeV$$

MET from QCD

 $p_x^{j_1} = 562 \text{ GeV}, \quad p_y^{j_1} = 195 \text{ GeV}, \quad p_T^{j_1} \sim 595 \text{ GeV}$

$p_y^{missing} = -$	$p_y^{visible}$
$p_x^{missing} = -$	$p_x^{visible}$
$p_x^{missing} =$	-212 GeV
$p_y^{missing} =$	$55 \mathrm{GeV}$

$$p_T^{missing} = 219 \text{ GeV}$$

(the angle between jet 2 and MET is small)

Effective Mass

squark pair production (Mass = 1 TeV) using Pythia-6 squark to quark + neutralino (mass = 100 GeV) **Delphes 3 simulation**

Plot Credit : Rahool Kumar Barman

MET/ Effective Mass Cut

R

squark pair production (Mass = 1 TeV) using Pythia-6 squark to quark + neutralino (mass = 100 GeV) **Delphes 3 simulation**

Plot Credit : Rahool Kumar Barman

Results

Signal Region [Meff-]	2j-1200	2j-1600	2j-2000	2j-2400	2j-2800
	MC expected events				
Diboson	28.17	14.37	7.02	3.09	0.86
Z/γ^*+ jets	346.37	140.61	54.13	24.23	10.22
W+jets	142.39	47.49	18.33	8.23	3.37
$t\bar{t}(+\mathrm{EW}) + \mathrm{single top}$	21.40	5.84	2.54	1.13	0.32
	Fitted background events				
Diboson	28 ± 4	14.4 ± 2.3	7.0 ± 1.1	3.1 ± 0.5	0.86 ± 0.17
Z/γ^*+ jets	337 ± 19	141 ± 10	61 ± 8	26.8 ± 3.1	11.4 ± 1.4
W+jets	136 ± 24	57 ± 16	19 ± 5	9.4 ± 2.6	3.1 ± 1.1
$t\bar{t}(+\mathrm{EW}) + \mathrm{single top}$	15 ± 4	3.1 ± 1.7	1.34 ± 1.0	0.4 ± 0.4	0.18 ± 0.15
Multi-jet	1.8 ± 1.8	0.34 ± 0.34	_	_	_
Total bkg	517 ± 31	216 ± 18	88 ± 9	40 ± 4	15.5 ± 1.9
Observed	582	204	70	33	17
$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	3.6	1.00	0.42	0.30	0.32
$S_{\rm obs}^{95}$	131	36	15	11	11
S_{exp}^{95}	78^{+33}_{-21}	43^{+17}_{-12}	24^{+10}_{-6}	15^{+7}_{-4}	10^{+4}_{-3}
p_0 (Z)	0.06 (1.53)	0.50 (0.00)	$0.50 \ (0.00)$	$0.50 \ (0.00)$	$0.33 \ (0.43)$

ATLAS-CONF-2017-022

Transverse Mass

Transverse Mass

$$A \rightarrow B + X \ (inv)$$

$$M_A^2 = M_B^2 + M_X^2 + 2(E_T^B E_T^X \cosh(\Delta \eta_{BX}) - \mathbf{p}_T^B \cdot \mathbf{p}_T^X)$$

$$\cosh(x) \ge 1 \qquad E_T = \sqrt{p_T^2 + m^2}$$

$$M_T^2 = M_B^2 + M_X^2 + 2(E_T^B E_T^X - \mathbf{p}_T^B \cdot \mathbf{p}_T^X) \qquad M_A^2 \ge M_T^2$$

Suppose B and X are massless

Suppose B and X are massless

$$M_T^2 = 2E_T^B E_T^X (1 - \cos\phi)$$

Discovery of W boson in lepton + MET channel : Transverse Mass variable used

Stransverse Mass

$$M_{T2} = \min_{p_T^{mis} = p_T^{x_a} + p_T^{x_b}}$$

REF: Lester and Summers <u>https://arxiv.org/abs/hep-ph/9906349</u>

Two invisible particles x particle coming from $A => x_a$ x particle coming from $B => x_b$

The vector sum will give MET

Split the missing transverse energy into two parts $p_T^{mis} = p_T^{x_a} + p_T^{x_b}$

Assume the mass of the invisible particle and calculate $M_T(x_a, B_a)$ and $M_T(x_b, B_b)$

Take the Max of $M_T(x_a, B_a)$ and $M_T(x_b, B_b)$

Now vary the MET splitting* which minimises the Max($M_T(x_a, B_a)M_T(x_b, B_b)$)

$$[\operatorname{Max}(M_T(x_a, B_a), M_T(x_b, B_b))]$$

MT2 Variable

squark pair production (Mass = 1 TeV) using Pythia-6 squark to quark + neutralino (mass = 100 GeV) **Delphes 3 simulation**

(naively written code for MT2, slight discrepancy in result when compared with the public code)

 α_T Variable

 $lpha_T$

α_T Variable

$$\alpha_T = \frac{p_T^{j_2}}{M_T^{j_1 j_2}} =$$

Pile up

Colliding beams

The number of events per second = $\frac{dR}{dt} \propto \sigma$ $\frac{dR}{dt} = \mathscr{L}\sigma$

The proportionality constant is called Luminosity

REF:https://cds.cern.ch/record/941318/files/p361.pdf

 $\mathcal{L} = \text{luminosity} (cm^{-2}second^{-1})$ $1~{\rm cm^{-2}~s^{-1}} = 10^{-33}~{\rm nb^{-1}~s^{-1}}$

Colliding beams

The number of events per second = $\frac{dR}{dt} \propto \sigma$ $\frac{dR}{dt} = \mathscr{L}\sigma$

The proportionality constant is called Luminosity

Consider two gaussian bunches (spread in the x-y plane) containing n_1 and n_2 particles respectively These collide with frequency f and N_b is the number of bunches in one beam then

$$\mathscr{L} = rac{N_1 N_2 f N_B}{4\pi\sigma_x\sigma_y}$$
 re

Example : $\sigma_x = \sigma_v = 20 \mu m N_B = 2800 f =$

REF:https://cds.cern.ch/record/941318/files/p361.pdf

- here σ_x and σ_y are the Gaussian horizontal and vertical widths, spectively.

40*MHz*
$$N_1 = N_2 = 10^{11} \mathscr{L} \sim 10^{34} cm^{-2} s^{-1}$$

Pile up

Each proton bunch contains billions of protons

Consider Instantaneous luminosity $10^{34} cm^{-2} s^{-1} = 10^7 mb^{-1} Hz$

Proton proton cross section \sim 100 mb (dominated by inelastic processes)

Event rate = $10^7 mb^{-1}Hz \times 100mb = 10 \times 10^8 Hz$

Time gap between two bunch crossing = $25 \text{ ns} = 25 \times 10^{-9} Hz^{-1}$

Expected number of event per 25 ns = 25 events

In any bunch crossing we expect about 25 events superimposed on interesting process like Higgs production, top quark, new physics etc. => Pileup

Pile up

1 Event takes 1-2 MB of storage : storage required for 10⁹. Events per second = 1000 TB/s !!

Average number of PU vertices at Tevatron ~ 5 Average number of PU vertices at the HL-LHC ~ 140-200 Actual number in a given bunch crossing fluctuates follows Poisson distribution around its mean value

Each PU vertex generally produce a few tens of soft hadrons The detected final state particles will be the superposition Of particles coming from hard process and soft particles Coming from PU vertices (soft Hadrons)

Jets@HL-LHC

Number of jets increases with PU

LLP Model: $pp \rightarrow XX, X \rightarrow q\bar{q}$

Event rates

Inelastic events : 10⁹ Hz (cross section100 mb) W Events : Top quark Events: Higgs Events : New Physics Rate :

Event selection should be sensitive at 1: 10¹¹ level

- (Cross section)
- (Cross section ~1000 pb)
- (cross section $\sim 50 \text{ pb}$)
- (Cross section 1 fb)
- Dedicated selection conditions required to select a few interesting events => Trigger

Trigger system in CMS

Level I (L1) Trigger : Coarse Granularity, Hardware based, fast decision (3 micro second), Output 100 KHz

High Level Trigger (HLT) : Full Granularity, Software based, avg time req:300 milli second, Output 1 KHz

Low or zero sensitivity to new physics with low-mass.

Taken from Swagata Mukherjee's talk https://indico.cern.ch/event/1182683/attachments/2518736/4330705/7August.pdf

Trigger Menu@HL-LHC(PU=200)

	Offline	Rate	Additional	Objects			
L1 Trigger seeds	Threshold(s)	$\langle PU \rangle = 200$	Requirement(s)	plateau			
	at 90% or 95% (50%)			efficiency			
	[GeV]	[kHz]	[cm, GeV]	[%]			
Single/Double/Triple Lepton (electron, muon) seeds							
Single TkMuon	22	12	$ \eta < 2.4$	95			
Double TkMuon	15,7	1	$ \eta <$ 2.4, $\Delta z <$ 1	95			
Triple TkMuon	5,3,3	16	$ \eta <$ 2.4, $\Delta z <$ 1	95			
Single TkElectron	36	24	$ \eta < 2.4$	93			
Single TkIsoElectron	28	28	$ \eta < 2.4$	93			
TkIsoElectron-StaEG	22, 12	36	$ \eta < 2.4$	93, 99			
Double TkElectron	25, 12	4	$ \eta < 2.4$	93			
Single StaEG	51	25	$ \eta < 2.4$	99			
Double StaEG	37,24	5	$ \eta < 2.4$	99			
Photon seeds							
Single TkIsoPhoton	36	43	$ \eta < 2.4$	97			
Double TkIsoPhoton	22, 12	50	$ \eta < 2.4$	97			
Taus seeds							
Single CaloTau	150(119)	21	$ \eta < 2.1$	99			
Double CaloTau	90,90(69,69)	25	$ \eta < 2.1, \Delta R > 0.5$	99			
Double PuppiTau	52,52(36,36)	7	$ \eta < 2.1, \Delta R > 0.5$	90			
Hadronic seeds (jets,H _T)							
Single PuppiJet	180	70	$ \eta < 2.4$	100			
Double PuppiJet	112,112	71	$ \eta <$ 2.4, $\Delta \eta <$ 1.6	100			
PuppiH _T	450(377)	11	jets: $ \eta < 2.4, p_{\rm T} > 30$	100			
QuadPuppiJets-PuppiH _T	70,55,40,40,400(328)	9	jets: $ \eta < 2.4, p_{\rm T} > 30$	100,100			
$E_{\rm T}^{\rm miss}$ seeds							
PuppiE ^{miss}	200(128)	18		100			

REF: CMS L1 TDR 2020

More and More backgrounds

Non Collisional: Some trigger fired and a cosmic muon can pass the detector at the same time

between two muons

particles)

Beam Gas: Collision of proton beam with gas molecule inside the beam pipe (both elastic and inelastic)

Of the particles or generate missing energy signal

Dedicated efforts are required to understand to mitigate such backgrounds

- If it passes through the both hemisphere of the detector it will be identified as two back to back muons
- Removal: impact parameter cut, timing cut and angular cut
- Beam halo: Collision of proton beam with some part of the LHC part, mostly collimator (required to clean stray
- **Detector induced:** Some parts of the detector may not work or misfire => change the 4 momentum measurements

