Collider Physics

Biplob Bhattacherjee

Centre for High Energy Physics
Indian Institute of science

Sangam@HRI-2O24
Harish-Chandra Research Institute
11th -12th March 2024

Many excellent references

Books

Modern Particle Physics: Mark Thomson
Introduction to Elementary Particles: Griffiths
Quantum Field Theory and the Standard Model : Schwartz
QCD and Collider Physics : Ellis, Stirling and Webber

Online

CMS and ATLAS physics webpages
COLLIDER PHENOMENOLOGY : Tao Han(hep-ph:0508097)
Particle data Group https://pdg.Ibl.gov/2021/reviews/rpp2020-rev-passage-particles-matter.pdf
Particle data Group https://pdg.Ibl.gov/2023/AtomicNuclearProperties/adndt.pdf
CMS and ATLAS physics webpages
CMS L1 TDR 2020
Towards Jetography : G Salam
Pileup Mitigation by G. Soyez 1801.09721

Tracking and Calorimetry

Tracking

A charged particle bends in the magnetic field=> momentum can be measured from the bending Need to measure the position of the charged particle at different points => reconstruct the track The position measurement should not reduce the energy of the charged particle

Tracking

A charged particle bends in the magnetic field=> momentum can be measured from the bending Need to measure the position of the charged particle at different points => reconstruct the track The position measurement should not reduce the energy of the charged particle

Transverse momentum of The particle

Magnetic field (z direction)

Radius of Curvature $=r=\frac{p_{T}}{0.3 B}$

Tracker volume

Tracking

(8) Magnetic field

Suppose a charged particle is detected at $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$
$B=$ Magnetic field in Tesla
$\alpha \simeq \underline{L} \quad \mathrm{~L}=$ The distance between P 1 and P 3
$r=$ Radius of the circle in Meter
$\mathrm{p}_{\mathrm{T}}=$ Momentum of the charged particle $=0.3 \mathrm{Br}$
$S=$ Depth of the arc, called Sagitta in Meter

Tracking

(8) Magnetic field

Example : for $\mathrm{p}_{\mathrm{T}}=\mathbf{1 G e V}, \mathrm{L}=1 \mathrm{~m}$ and $\mathrm{B}=\mathbf{1} \mathrm{T}$ Sagitta (s) is $\sim 3.8 \mathrm{~cm}$

Tracking

Magnetic field

Suppose three points are used to measure the track

$$
s=x_{2}-\frac{x_{1}+x_{3}}{2}
$$

Momentum resolution $\frac{\sigma_{P T}}{p_{T}} \propto \frac{\sigma}{s} \propto \frac{\sigma 8 p_{T}}{0.3 B L^{2}}$ σ is the uncertainty associated with the position measurement

Tracking

Magnetic field

Suppose three points are used to measure the track

$$
s=x_{2}-\frac{x_{1}+x_{3}}{2}
$$

Momentum resolution $\frac{\sigma_{P T}}{p_{T}} \propto \frac{\sigma}{s} \propto \frac{\sigma 8 p_{T}}{0.3 B L^{2}}$
σ is the uncertainty associated with the position measurement
For better measurement we need small σ, large B and large L
CMS uses stronger magnetic field than ATLAS
ATLAS uses bigger L than CMS
Resolution degrades with the momentum

Tracking

Magnetic field

Suppose three points are used to measure the track

$$
s=x_{2}-\frac{x_{1}+x_{3}}{2}
$$

Momentum resolution $\frac{\sigma_{P T}}{p_{T}} \propto \frac{\sigma}{s} \propto \frac{\sigma 8 p_{T}}{0.3 B L^{2}}$
σ is the uncertainty associated with the position measurement
For better measurement we need small σ, large B and large L
CMS uses stronger magnetic field than ATLAS
ATLAS uses bigger L than CMS
Resolution degrades with the momentum
Charged particle inside the thick material undergoes multiple scatterings : This increases the error in the measurement of the Sagitta : Low Z, high radiation length and thin material reduces this effect

Basic Tracker Design

Layer V
Layer IV
Layer III

Layer II

Layer I

Basic Tracker Design

Basic Tracker Design

Iterative track finding algorithms (time consuming)

Basic Tracker Design

Basic Tracker Design

Iterative track finding algorithms (time consuming) track fitting algorithms => Momentum measurement Efficiency increases with the number of hits

Basic Tracker Design

Layer close to the vertex increase the accuracy of the vertex

Less number of layers : vertex position error increases

Calorimetry

Calorimeter measures energy of charged and neutral hadrons(HCAL), electron and photon (ECAL) $=>$ destructive measurement unlike tracker Interaction of particle with the detector generates shower $=>$ identification of particle

Calorimetry

Active material: which measures the shower energy
Passive material: which causes the particle to shower(high Z material)

Two Types of calorimeters :

Homogeneous: single active material

Advantage : excellent energy resolution
Disadvantage: costly Example: CMS ECAL

Sampling: alternative layers of active and passive materials

Advantage : optimal choice of absorber and active material possible , can be made compact Cheap passive material

Disadvantage: Only some of the energy is deposited in the detector, energy resolution worse than homogeneous calorimeter

Example: CMS HCAL, ATLAS ECAL and HCAL

Electromagentic Shower

Incoming particle loses energy=> production of secondary particle
Cascade of secondary electron/positron and photons produced due to the interaction of the particle with the detector material.

Electromagentic Shower

Incoming particle loses energy=> production of secondary particle
Cascade of secondary electron/positron and photons produced due to the interaction of the particle with the detector material.

Ionisation. : emission of electrons from the detector material atoms (dominant at low energy) Bremsstrahlung: incoming electron emits photon in the coulomb field of the nuclei (proportional to energy and m^{-2})

Electromagentic Shower

Incoming particle loses energy=> production of secondary particle
Cascade of secondary electron/positron and photons produced due to the interaction of the particle with the detector material.

Ionisation. : emission of electrons from the detector material atoms (dominant at low energy) Bremsstrahlung: incoming electron emits photon in the coulomb field of the nuclei (proportional to energy and m^{-2})

$$
\frac{d E}{d x}=\frac{E}{X_{0}} \quad, \text { Xo is called Radiation length }
$$

Radiation length: The average distance over which the electron loses its 63% of the energy inside the detector material

$$
X_{0} \propto \frac{1}{Z^{2}} \quad(\text { For air } \mathrm{X} \sim 30000 \mathrm{~cm}, \text { lead }=0.5 \mathrm{~cm})
$$

Electromagentic Shower

For photon

Photo-electric effect : it dominates in the low energy range

$$
\sigma_{\text {photoelectric }} \propto \frac{1}{E^{3.5}}
$$

Compton Scattering: dominates in the mid energy range

Electrons are emitted

Mostly isotropically

$$
\sigma_{\text {compton }} \sim \frac{\ln (E)}{E}
$$

Pair production: dominates in the high energy range (above 1.02 MeV) $\gamma \rightarrow e^{+} e^{-}$(in the vicinity of the atomic nucleus)

$$
\begin{array}{ll}
& \text { Electron and positron } \\
\sigma_{\text {pair }} \propto \frac{1}{A X_{0}} & \text { Pair mostly moves in } \\
\text { The direction of the photon }
\end{array}
$$

Electromagnetic Shower

Below a threshold energy ionisation dominates, Number of secondary particles reduced and finally stopped

Electromagnetic Shower

Below a threshold energy ionisation dominates, Number of secondary particles reduced and finally stopped

Shower development is determined by radiation length , it takes an absorber of about 25 radiation length to contain most of the shower
Moeller radius : The transverse development of the shower is determined by Moliere radius

$$
R_{M} \propto X_{0}
$$

99% of the energy is contained in cylinder of radius $5 R_{M}$

Very similar to the EM shower, more complex => many more processes
Elastic scattering : hadron + nucleus \rightarrow hadron + nucleus (no shower produced)
Inelastic scattering: hadron + nucleus $\rightarrow \pi+\pi+\ldots+$ nucleus * etc.
Charge exchange processes: $\pi^{-}+n \rightarrow \pi^{0}+p$
Nuclear spallation : high energy nucleus hits a nucleus, a large number of particles and debris nucleus are emitted.

Hadronic Shower

Very similar to the EM shower, more complex => many more processes Elastic scattering : hadron + nucleus \rightarrow hadron + nucleus (no shower produced)

Inelastic scattering: hadron + nucleus $\rightarrow \pi+\pi+\ldots+$ nucleus ${ }^{*}$ etc.
Charge exchange processes: $\pi^{-}+n \rightarrow \pi^{0}+p$
Nuclear spallation : high energy nucleus hits a nucleus, a large number of particles and debris nucleus are emitted.

Non detectable part: nuclear binding energy, neutrinos etc.
Shower has two component : hadronic and electromagnetic (photons also come from neutral
Pion decay, nuclear de-excitations) => large fluctuations of EM and hadronic components (event by event)

Shower development determined by mean free length between subsequent inelastic collisions

$$
\lambda_{\text {Interaction length }} \sim 35 A^{1 / 3} \mathrm{in} \mathrm{~cm}
$$

Hadronic Shower

> Hadronic shower has more depth than EM shower Mean fraction of EM showers $\propto \ln (E)$

Production of secondary hadrons from the inelastic collision, sequential inelastic collisions Inelastic collision stops below prion production energy threshold => ionisations starts

Decays of pion to photons (hadronic shower contains a substantial electromagnetic fraction) Missing part: neutrinos, nuclear binding energy, delayed photons from nuclear de-excitation, low energy neutron etc.)
some part is compensated by neutron capture (fission) -> release of energy

CMS and ATLAS Calorimeter

Homogeneous calorimeter

$\mathbf{P b W O}_{\mathbf{4}}$ crystal $\mathbf{X}_{\mathbf{0}} \sim \mathbf{0 . 9} \mathrm{cm}$ and $\mathbf{R}_{\mathbf{M}} \sim \mathbf{2 . 2} \mathrm{cm}$ 23 cm long crystal with a front face 2.2 cm X 2.2 cm
$3 X_{3}$ or $5 X_{5}$ crystals contain the energy of the electron/photon

Sampling calorimeter

ATLAS Active material: Liquid Argon and absorber: Pb
ECAL $24 X_{0}$ total length
Longitudinal segmentation

CMS and ATLAS HCAL : sampling type

Energy resolution

Accuracy in the energy measurement in the Calorimeter

$$
\begin{gathered}
\frac{\sigma}{E}=\left(\frac{\sigma}{E}\right)_{\text {stat }}+\left(\frac{\sigma}{E}\right)_{\text {instru }}+\left(\frac{\sigma}{E}\right)_{\text {sys }} \\
\left.\left(\frac{\sigma}{E}\right)_{\text {stat }}=\frac{\sqrt{N}}{N}=\left.\frac{a}{\sqrt{E}}\right|_{\text {Instru }}=\frac{\sigma}{E}\right)_{\text {syst }}=c
\end{gathered}
$$

Energy resolution

Accuracy in the energy measurement in the Calorimeter

$$
\frac{\sigma}{E}=\left(\frac{\sigma}{E}\right)_{s t a t}+\left(\frac{\sigma}{E}\right)_{i n s t r u}+\left(\frac{\sigma}{E}\right)_{s y s}
$$

$$
\left(\frac{\sigma}{E}\right)_{s t a t}=\frac{\sqrt{N}}{N}=\frac{a}{\sqrt{F}} \quad\left(\frac{\sigma}{E}\right)_{\text {Instru }}=\frac{b}{E} \quad\left(\frac{\sigma}{E}\right)_{s y s t}=c
$$

Some systematics increases with
Energy proportional to the number of secondary particles N

Noise independent of energy calorimeter)

Muon Detection

The region where Bethe Block formula is valid

Minimum Ionizing particle : whose energy loss is close to minimum

Muon Detection

The region where Bethe Block formula is valid

Minimum Ionizing particle : whose energy loss is close to minimum

Muon in 100 cm thick Iron block

$$
\begin{aligned}
& \left.\left\langle\frac{d E}{d X}\right\rangle\right|_{\text {muon }}=1.5 \mathrm{MeV}^{-1} \mathrm{~cm}^{2} \\
& \rho(F e)=7.87 \mathrm{gcm}^{-3}
\end{aligned}
$$

Energy loss $=1.5 \times 100 \times 7.8 \sim 1 \mathrm{GeV}$

Muon penetrates through ECAL and HCAL

Significant bremsstrahlung from Muon starts with energy above 1 TeV

Muon Detection

The region where Bethe Block formula is valid

Minimum Ionizing particle : whose energy loss is close to minimum

Muon in 100 cm thick Iron block

$$
\begin{aligned}
& \left.\left\langle\frac{d E}{d X}\right\rangle\right|_{m u o n}=1.5 \mathrm{MeV}^{-1} \mathrm{~cm}^{2} \\
& \rho(F e)=7.87 \mathrm{gcm}^{-3}
\end{aligned}
$$

Energy loss $=1.5 \times 100 \times 7.8 \sim 1 \mathrm{GeV}$

Muon penetrates through ECAL and HCAL

New Physics searches: Variables

New physics Search: Resonance

The decay products of the new particle are visible SM particles

New physics Search: Cascade

\boldsymbol{R} - parity conserved

Lightest SUSY particle is stable
(dark matter
candidate)
Missing transverse
energy

Signal vs Background : Cuts

Define variables which can discriminate signal and background

Some numbers
SM cross sections (background) QCD $(\mathrm{pt}>100 \mathrm{GeV})=2000000 \mathrm{pb}$ $\mathrm{W}+$ jets $=20000 \mathrm{pb}$ (W decays to electron)
top pair $=900 \mathrm{pb}$
SUSY cross sections (signal)
Gluino pair (mass = 1 TeV)
$\sim 450 \mathrm{fb}$
stop pair(mass $=1 \mathrm{TeV}$)
$\sim 10 \mathrm{fb}$

Variable

Signal vs Background : Cuts

Define variables which can discriminate signal and background
Typical variable for SUSY : missing transverse energy, effective mass

Signal vs Background : Cuts

It is not always possible to construct observables which can easily discriminate signal from backgrounds

atLAS-CONF-2017-o22 Not the most updated one

Targeted signal	$\tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{q}_{1}^{0}$						
Requirement	Signal Region [Meff-]						
	4j-1000	4j-1400	4j-1800	4j-2200	4j-2600	4j-3000	5j-1700
$E_{T}^{\text {miss }}[\mathrm{GeV}]>$	250						
$p_{\mathrm{T}}\left(j_{1}\right)[\mathrm{GeV}]>$	200						700
$p_{\mathrm{T}}\left(j_{4}\right)[\mathrm{GeV}]>$	100				150		50
$p_{\mathrm{T}}\left(j_{5}\right)[\mathrm{GeV}]>$	-						50
$\left\|\eta\left(j_{1,2,3,4}\right)\right\|<$	1.2	2.0					-
$\Delta \phi\left(\mathrm{et}_{1,2,(3)} \vec{E}^{\text {miss }}\right)_{\text {min }}>$	0.4						
$\Delta \phi\left(\mathrm{jet}_{\mathrm{i}}, 3, \mathrm{E}_{\mathrm{T}}^{\text {miss }}\right)_{\text {min }}>$	0.4						0.2
$E_{T}^{\text {miss }} / m_{\text {eff }}\left(N_{\mathrm{j}}\right)>$	0.3	0.25			0.2		0.3
Aplanarity >	0.04						-
$m_{\text {eff }}$ (incl.) [GeV]>	1000	1400	1800	2200	2600	3000	1700

SUSY search: Multi-jet + MET

ATLAS-CONF-2017-022

$$
\begin{gathered}
p p \rightarrow \tilde{g} \tilde{g} \\
\tilde{g} \rightarrow q \bar{q} \chi_{1}^{0} \\
p p \rightarrow \tilde{q} \tilde{q} \\
\tilde{q} \rightarrow q \chi_{1}^{0}
\end{gathered}
$$

Final state : Multiple jets + MET

SM backgrounds

Z + jets

MadGraph5_aMC@NLO

SM backgrounds

```
W + jets
```


SM backgrounds

MadGraph5_aMC@NLO

SM backgrounds

SM backgrounds

QCD Multi-jet background

MadGraph5_aMC@NLO

Simple Illustration

$$
p p \rightarrow \tilde{q} \tilde{q}
$$

$$
\tilde{q} \rightarrow q \chi_{1}^{0}
$$

squark pair production (Mass = 1 TeV) using Pythia-6
squark to quark + neutralino (mass $=100 \mathrm{GeV}$)
Delphes 3 simulation backgrounds: Z+ 2 jets, QCD dijet
(This is only for illustration)

$$
p_{T}^{j_{1}} \geq 100 G e V p_{T}^{j_{2}} \geq 100 G e V
$$

MET distribution

> squark pair production (Mass = 1 TeV) using Pythia-6
> squark to quark + neutralino (mass $=100 \mathrm{GeV}$)
> Delphes 3 simulation

Plot Credit : Rahool Kumar Barman

MET from QCD

$$
\begin{aligned}
& \text { ideal situation } \\
& p_{x}^{j_{1}}=562 \mathrm{GeV}, \quad p_{y}^{j_{1}}=195 \mathrm{GeV}, \quad p_{T}^{j_{1}} \sim 595 \mathrm{GeV} \\
& p_{x}^{\text {visible }}=p_{x}^{j_{1}}+p_{x}^{j_{2}}=562-564=-2 \mathrm{GeV} \\
& p_{y}^{\text {visible }}=p_{y}^{j_{1}}+p_{y}^{j_{2}}=195-193=-2 \mathrm{GeV} \\
& p_{y}^{\text {missing }}=-p_{y}^{\text {visible }} \\
& p_{x}^{\text {missing }}=-p_{x}^{\text {visible }} \\
& p_{T}^{\text {missing }}=\sqrt{\left(p_{x}^{\text {missing }}\right)^{2}+\left(p^{\text {missing }}{ }_{y}\right)^{2}} \sim 3 \quad \mathrm{GeV} \\
& p_{x}^{j_{2}}=-564 \mathrm{GeV}, p_{y}^{j_{2}}=-193 \mathrm{GeV}, p_{T}^{j_{2}} \sim 596 \mathrm{GeV} \\
& \text { perfectly balanced di-jet } \\
& \text { MET~ } 0 \mathrm{GeV}
\end{aligned}
$$

MET from QCD

real example

$$
p_{x}^{j_{1}}=562 \mathrm{GeV}, \quad p_{y}^{j_{1}}=195 \mathrm{GeV}, \quad p_{T}^{j_{1}} \sim 595 \mathrm{GeV}
$$

$$
p_{x}^{j_{2}}=-350 \mathrm{GeV}, p_{y}^{j_{2}}=-250 \mathrm{GeV}
$$

jet 2 is badly mis-measured

> mis-measured di-jet (multi-jet) large MET is not impossible

$\Delta \varphi$ Cut

$$
p_{x}^{j_{1}}=562 \mathrm{GeV}, \quad p_{y}^{j_{1}}=195 \mathrm{GeV}, \quad p_{T}^{j_{1}} \sim 595 \mathrm{GeV}
$$

jet 2 Is Tadly mis-measured

$$
\begin{aligned}
& p_{y}^{\text {missing }}=-p_{y}^{v i s i b l e} \\
& p_{x}^{m i s s i n g}=-p_{x}^{v i s i b l e} \\
& p_{x}^{m i s s i n g}=-212 \mathrm{GeV} \\
& p_{y}^{m i s s i n g}=55 \mathrm{GeV}
\end{aligned}
$$

$$
p_{T}^{m i s s i n g}=219 \mathrm{GeV}
$$

(the angle between jet 2 and MET is small)

Effective Mass

squark pair production (Mass = 1 TeV) using Pythia-6
squark to quark + neutralino (mass $=100 \mathrm{GeV}$)
Delphes 3 simulation
$p_{T}^{j_{1}} \geq 100 \mathrm{GeV} p_{T}^{j_{2}} \geq 100 \mathrm{GeV}$

Plot Credit : Rahool Kumar Barman

Signal Region [Meff-]	$\mathbf{2 j - 1 2 0 0}$	$\mathbf{2 j - 1 6 0 0}$	$\mathbf{2 j - 2 0 0 0}$	$\mathbf{2 j - 2 4 0 0}$	$\mathbf{2 j - 2 8 0 0}$
		MC expected events			
Diboson	28.17	14.37	7.02	3.09	0.86
Z/ $\gamma^{*}+$ jets	346.37	140.61	54.13	24.23	10.22
W+jets	142.39	47.49	18.33	8.23	3.37
$t \bar{t}(+$ EW $)+$ single top	21.40	5.84	2.54	1.13	0.32
			Fitted background events		
Diboson	28 ± 4	14.4 ± 2.3	7.0 ± 1.1	3.1 ± 0.5	0.86 ± 0.17
Z/ $\gamma^{*}+$ jets	337 ± 19	141 ± 10	61 ± 8	26.8 ± 3.1	11.4 ± 1.4
W+jets	136 ± 24	57 ± 16	19 ± 5	9.4 ± 2.6	3.1 ± 1.1
$t \bar{t}(+$ EW $)+$ single top	15 ± 4	3.1 ± 1.7	1.34 ± 1.0	0.4 ± 0.4	0.18 ± 0.15
Multi-jet	1.8 ± 1.8	0.34 ± 0.34	-	-	-
Total bkg	517 ± 31	216 ± 18	88 ± 9	40 ± 4	15.5 ± 1.9
Observed	582	204	70	33	17
$\langle\epsilon \sigma\rangle_{\text {obs }}^{95}[f b]$	3.6	1.00	0.42	0.30	0.32
$S_{\text {obs }}^{95}$	131	36	15	11	11
$S_{\text {exp }}^{95}$	78_{-21}^{+33}	43_{-12}^{+17}	24_{-6}^{+10}	15_{-4}^{+7}	10_{-3}^{+4}
$p_{0}(\mathrm{Z})$	$0.06(1.53)$	$0.50(0.00)$	$0.50(0.00)$	$0.50(0.00)$	$0.33(0.43)$

Transverse Mass

$$
\begin{gathered}
A \rightarrow B+X(i n v) \\
M_{A}^{2}=M_{B}^{2}+M_{X}^{2}+2\left(E_{T}^{B} E_{T}^{X} \cosh \left(\Delta \eta_{B X}\right)-\mathbf{p}_{T}^{B} \cdot \mathbf{p}_{T}^{X}\right) \\
\cosh (x) \geq 1 \\
E_{T}=\sqrt{p_{T}^{2}+m^{2}} \\
M_{T}^{2}=M_{B}^{2}+M_{X}^{2}+2\left(E_{T}^{B} E_{T}^{X}-\mathbf{p}_{T}^{B} \cdot \mathbf{p}_{T}^{X}\right)
\end{gathered}
$$

Transverse Mass

$$
\begin{aligned}
& A \rightarrow B+X(i n v) \\
& M_{A}^{2}=M_{B}^{2}+M_{X}^{2}+2\left(E_{T}^{B} E_{T}^{X} \cosh \left(\Delta \eta_{B X}\right)-\mathbf{p}_{T}^{B} \cdot \mathbf{p}_{T}^{X}\right) \\
& \cosh (x) \geq 1 \\
& \quad E_{T}=\sqrt{p_{T}^{2}+m^{2}} \\
& M_{T}^{2}=M_{B}^{2}+M_{X}^{2}+2\left(E_{T}^{B} E_{T}^{X}-\mathbf{p}_{T}^{B} \cdot \mathbf{p}_{T}^{X}\right) \quad M_{A}^{2} \geq M_{T}^{2}
\end{aligned}
$$

Suppose B and X are massless
Suppose B and X are massless

$$
M_{T}^{2}=2 E_{T}^{B} E_{T}^{X}(1-\cos \phi)
$$

Discovery of W boson in lepton + MET channel : Transverse Mass variable used

Stransverse Mass

Two invisible particles x particle coming from $A \Rightarrow x_{a}$ x particle coming from $B=>x_{b}$

The vector sum will give MET
Split the missing transverse energy into two parts

$$
p_{T}^{m i s}=p_{T}^{x_{a}}+p_{T}^{x_{b}}
$$

Assume the mass of the invisible particle and calculate

$$
M_{T}\left(x_{a}, B_{a}\right) \text { and } M_{T}\left(x_{b}, B_{b}\right)
$$

Take the Max of $M_{T}\left(x_{a}, B_{a}\right)$ and $M_{T}\left(x_{b}, B_{b}\right)$
Now vary the MET spliting* which minimises the $\operatorname{Max}\left(M_{T}\left(x_{a}, B_{a}\right) M_{T}\left(x_{b}, B_{b}\right)\right)$

$$
M_{T 2}=\min _{p_{T}^{m i s}=p_{T}^{x_{a}}+p_{T}^{x_{b}}}\left[\operatorname{Max}\left(M_{T}\left(x_{a}, B_{a}\right), M_{T}\left(x_{b}, B_{b}\right)\right)\right]
$$

MT2 Variable

squark pair production (Mass = 1 TeV) using Pythia-6
squark to quark + neutralino (mass $=100 \mathrm{GeV}$)
Delphes 3 simulation
(naively written code for MT2, slight discrepancy in result when compared with the public code)

α_{T} Variable

α_{T} Variable

$$
\alpha_{T}=\frac{p_{T}^{j_{2}}}{M_{T}^{j_{1} j_{2}}}=\sqrt{\frac{p_{T}^{j_{2}}}{p_{T}^{j_{1}}}} \frac{1}{\sqrt{2(1-\cos \Delta \phi)}}
$$

Pile up

Luminosity
Colliding beams

The number of events per second $=\frac{d R}{d t} \propto \sigma$

$$
\frac{d R}{d t}=\mathscr{L} \sigma
$$

$$
\begin{gathered}
\mathcal{L}=\text { luminosity }\left(\mathrm{cm}^{-2} \text { second }{ }^{-1}\right) \\
1 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=10^{-33} \mathrm{nb}^{-1} \mathrm{~s}^{-1}
\end{gathered}
$$

The proportionality constant is called Luminosity

Luminosity

Colliding beams

The number of events per second $=\frac{d R}{d t} \propto \sigma$

$$
\frac{d R}{d t}=\mathscr{L} \sigma
$$

$$
\begin{gathered}
\mathcal{L}=\text { luminosity }\left(\mathrm{cm}^{-2} \text { second }{ }^{-1}\right) \\
1 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=10^{-33} \mathrm{nb}^{-1} \mathrm{~s}^{-1}
\end{gathered}
$$

The proportionality constant is called Luminosity
Consider two gaussian bunches (spread in the x - y plane) containing n_{1} and n_{2} particles respectively These collide with frequency f and N_{b} is the number of bunches in one beam then

$$
\mathscr{L}=\frac{N_{1} N_{2} f N_{B}}{4 \pi \sigma_{x} \sigma_{y}} \quad \begin{aligned}
& \text { where } \sigma_{x} \text { and } \sigma_{y} \text { are the Gaussian horizontal and vertical widths, } \\
& \text { respectively. }
\end{aligned}
$$

Example : $\sigma_{x}=\sigma_{y}=20 \mu m N_{B}=2800 f=40 \mathrm{MHz} N_{1}=N_{2}=10^{11} \mathscr{L} \sim 10^{34} \mathrm{~cm}^{-2} s^{-1}$

Pile up

Each proton bunch contains billions of protons
Consider Instantaneous luminosity $10^{34} \mathrm{~cm}^{-2} s^{-1}=10^{7} \mathrm{mb}^{-1} \mathrm{~Hz}$

Proton proton cross section ~ 100 mb (dominated by inelastic processes)

Event rate $=10^{7} \mathrm{mb}^{-1} \mathrm{~Hz} \times 100 \mathrm{mb}=10 \times 10^{8} \mathrm{~Hz}$

Time gap between two bunch crossing $=25 \mathrm{~ns}=25 \times 10^{-9} \mathrm{~Hz}^{-1}$

Expected number of event per $25 \mathrm{~ns}=25$ events

In any bunch crossing we expect about 25 events superimposed on interesting process like Higgs production, top quark , new physics etc. => Pileup

Pile up

1 Event takes 1-2 MB of storage : storage required for 109. Events per second $=1000 \mathrm{~TB} / \mathrm{s}$!!

Jets@HL-LHC

Number of jets increases with PU

REF:CMS L1 TDR 2020

LLP Model: $p p \rightarrow X X, X \rightarrow q \bar{q}$

Jet info
Jet parameter $=0.4$

$$
\mathrm{p}_{\mathrm{T}}>60 \mathrm{GeV}
$$

$$
|\eta|<2.5
$$

BB, Swagata Mukherjee, Rhitaja Sengupta, Prabhat Solanki e-Print: 2003.03943, JHEP 2020

Event rates

$$
\begin{array}{ll}
\text { Inelastic events : } 10^{9} \mathrm{~Hz} \text { (cross section100 mb) } \\
\text { W Events : } & \text { (Cross section) } \\
\text { Top quark Events: } & \text { (Cross section } \sim 1000 \mathrm{pb}) \\
\text { Higgs Events : } & \text { (cross section } \sim 50 \mathrm{pb} \text {) } \\
\text { New Physics Rate : } & \text { (Cross section } 1 \mathrm{fb} \text {) }
\end{array}
$$

Event selection should be sensitive at $1: 1011$ level
Dedicated selection conditions required to select a few interesting events => Trigger

Trigger system in CMS

Level I (L1) Trigger : Coarse Granularity, Hardware based, fast decision (3 micro second), Output 100 KHz

High Level Trigger (HLT) : Full Granularity, Software based, avg time req:300 milli second, Output 1 KHz

Low or zero sensitivity to new physics with low-mass.

Trigger Menu@ HL-LHC(PU=200)

L1 Trigger seeds	Offline Threshold(s) at 90% or 95% (50%) [GeV]	Rate $\langle P U\rangle=200$ $[\mathrm{kHz}]$	Additional Requirement(s) $[\mathrm{cm}, \mathrm{GeV}]$	Objects plateau efficiency [\%]
Single/Double/Triple Lepton (electron, muon) seeds				
Single TkMuon	22	12	$\|\eta\|<2.4$	95
Double TkMuon	15,7	1	$\eta \mid<2.4, \Delta z<1$	95
Triple TkMuon	5,3,3	16	$\eta \mid<2.4, \Delta z<1$	95
Single TkElectron	36	24	$\|\eta\|<2.4$	93
Single TkIsoElectron	28	28	$\|\eta\|<2.4$	93
TkIsoElectron-StaEG	22, 12	36	$\|\eta\|<2.4$	93,99
Double TkElectron	25,12	4	$\|\eta\|<2.4$	93
Single StaEG	51	25	$\|\eta\|<2.4$	99
Double StaEG	37,24	5	$\|\eta\|<2.4$	99
Photon seeds				
Single TkIsoPhoton	36	43	$\|\eta\|<2.4$	97
Double TkIsoPhoton	22,12	50	$\|\eta\|<2.4$	97
Taus seeds				
Single CaloTau	150(119)	21	$\|\eta\|<2.1$	99
Double CaloTau	90,90(69,69)	25	$\eta \mid<2.1, \Delta R>0.5$	99
Double PuppiTau	52,52(36,36)	7	$\eta \mid<2.1, \Delta R>0.5$	90
Hadronic seeds (jets, H_{T})				
Single PuppiJet	180	70	$\|\eta\|<2.4$	100
Double PuppiJet	112,112	71	$\|\eta\|<2.4, \Delta \eta<1.6$	100
Puppi H_{T}	450(377)	11	jets: $\|\eta\|<2.4, p_{\mathrm{T}}>30$	100
QuadPuppiJets-Puppi $H_{\text {T }}$	70,55,40,40,400(328)	9	jets: $\|\eta\|<2.4, p_{\mathrm{T}}>30$	100,100
$E_{T}^{\text {miss }}$ seeds				
Puppi $E_{\mathrm{T}}^{\text {miss }}$	200(128)	18		100

More and More backgrounds

Non Collisional: Some trigger fired and a cosmic muon can pass the detector at the same time

If it passes through the both hemisphere of the detector it will be identified as two back to back muons

Removal: impact parameter cut, timing cut and angular cut between two muons

Beam halo: Collision of proton beam with some part of the LHC part, mostly collimator (required to clean stray particles)

Beam Gas: Collision of proton beam with gas molecule inside the beam pipe (both elastic and inelastic)
Detector induced: Some parts of the detector may not work or misfire => change the 4 momentum measurements Of the particles or generate missing energy signal

