Collider Physics

Biplob Bhattacherjee

Centre for High Energy Physics
Indian Institute of Science

Sangam@HRI-2O24
Harish-Chandra Research Institute
12th March 2024

Many excellent references

Books

Modern Particle Physics: Mark Thomson
Introduction to Elementary Particles: Griffiths
Quantum Field Theory and the Standard Model : Schwartz
QCD and Collider Physics : Ellis, Stirling and Webber

Online

CMS and ATLAS physics webpages
COLLIDER PHENOMENOLOGY : Tao Han(hep-ph:0508097)
Particle data Group https://pdg.Ibl.gov/2021/reviews/rpp2020-rev-passage-particles-matter.pdf
Particle data Group https://pdg.Ibl.gov/2023/AtomicNuclearProperties/adndt.pdf
CMS and ATLAS physics webpages
CMS L1 TDR 2020
Towards Jetography : G Salam
Pileup Mitigation by G. Soyez 1801.09721
atLAS-CONF-2017-o22 Not the most updated one

Targeted signal	$\tilde{g} \tilde{g}, \tilde{g} \rightarrow q \tilde{q}_{1}^{0}$						
Requirement	Signal Region [Meff-]						
	4j-1000	4j-1400	4j-1800	4j-2200	4j-2600	4j-3000	5j-1700
$E_{T}^{\text {miss }}[\mathrm{GeV}]>$	250						
$p_{\mathrm{T}}\left(j_{1}\right)[\mathrm{GeV}]>$	200						700
$p_{\mathrm{T}}\left(j_{4}\right)[\mathrm{GeV}]>$	100				150		50
$p_{\mathrm{T}}\left(j_{5}\right)[\mathrm{GeV}]>$	-						50
$\left\|\eta\left(j_{1,2,3,4}\right)\right\|<$	1.2	2.0					-
$\Delta \phi\left(\mathrm{et}_{1,2,(3)} \vec{E}^{\text {miss }}\right)_{\text {min }}>$	0.4						
$\Delta \phi\left(\mathrm{jet}_{\mathrm{i}}, 3, \mathrm{E}_{\mathrm{T}}^{\text {miss }}\right)_{\text {min }}>$	0.4						0.2
$E_{T}^{\text {miss }} / m_{\text {eff }}\left(N_{\mathrm{j}}\right)>$	0.3	0.25			0.2		0.3
Aplanarity >	0.04						-
$m_{\text {eff }}$ (incl.) [GeV]>	1000	1400	1800	2200	2600	3000	1700

SUSY search: Multi-jet + MET

ATLAS-CONF-2017-022

$$
\begin{gathered}
p p \rightarrow \tilde{g} \tilde{g} \\
\tilde{g} \rightarrow q \bar{q} \chi_{1}^{0} \\
p p \rightarrow \tilde{q} \tilde{q} \\
\tilde{q} \rightarrow q \chi_{1}^{0}
\end{gathered}
$$

Final state : Multiple jets + MET

SM backgrounds

Z + jets

MadGraph5_aMC@NLO

SM backgrounds

```
W + jets
```


SM backgrounds

MadGraph5_aMC@NLO

SM backgrounds

SM backgrounds

QCD Multi-jet background

MadGraph5_aMC@NLO

Simple Illustration

$$
p p \rightarrow \tilde{q} \tilde{q}
$$

$$
\tilde{q} \rightarrow q \chi_{1}^{0}
$$

squark pair production (Mass = 1 TeV) using Pythia-6
squark to quark + neutralino (mass $=100 \mathrm{GeV}$)
Delphes 3 simulation backgrounds: Z+ 2 jets, QCD dijet
(This is only for illustration)

$$
p_{T}^{j_{1}} \geq 100 G e V p_{T}^{j_{2}} \geq 100 G e V
$$

MET distribution

> squark pair production (Mass = 1 TeV) using Pythia-6
> squark to quark + neutralino (mass $=100 \mathrm{GeV}$)
> Delphes 3 simulation

Plot Credit : Rahool Kumar Barman

MET from QCD

$$
\begin{aligned}
& \text { ideal situation } \\
& p_{x}^{j_{1}}=562 \mathrm{GeV}, \quad p_{y}^{j_{1}}=195 \mathrm{GeV}, \quad p_{T}^{j_{1}} \sim 595 \mathrm{GeV} \\
& p_{x}^{\text {visible }}=p_{x}^{j_{1}}+p_{x}^{j_{2}}=562-564=-2 \mathrm{GeV} \\
& p_{y}^{\text {visible }}=p_{y}^{j_{1}}+p_{y}^{j_{2}}=195-193=-2 \mathrm{GeV} \\
& p_{y}^{\text {missing }}=-p_{y}^{\text {visible }} \\
& p_{x}^{\text {missing }}=-p_{x}^{\text {visible }} \\
& p_{T}^{\text {missing }}=\sqrt{\left(p_{x}^{\text {missing }}\right)^{2}+\left(p^{\text {missing }}{ }_{y}\right)^{2}} \sim 3 \quad \mathrm{GeV} \\
& p_{x}^{j_{2}}=-564 \mathrm{GeV}, p_{y}^{j_{2}}=-193 \mathrm{GeV}, p_{T}^{j_{2}} \sim 596 \mathrm{GeV} \\
& \text { perfectly balanced di-jet } \\
& \text { MET~ } 0 \mathrm{GeV}
\end{aligned}
$$

MET from QCD

real example

$$
p_{x}^{j_{1}}=562 \mathrm{GeV}, \quad p_{y}^{j_{1}}=195 \mathrm{GeV}, \quad p_{T}^{j_{1}} \sim 595 \mathrm{GeV}
$$

$$
p_{x}^{j_{2}}=-350 \mathrm{GeV}, p_{y}^{j_{2}}=-250 \mathrm{GeV}
$$

jet 2 is badly mis-measured

> mis-measured di-jet (multi-jet) large MET is not impossible

$\Delta \varphi$ Cut

$$
p_{x}^{j_{1}}=562 \mathrm{GeV}, \quad p_{y}^{j_{1}}=195 \mathrm{GeV}, \quad p_{T}^{j_{1}} \sim 595 \mathrm{GeV}
$$

jet 2 Is Tadly mis-measured

$$
\begin{aligned}
& p_{y}^{\text {missing }}=-p_{y}^{v i s i b l e} \\
& p_{x}^{m i s s i n g}=-p_{x}^{v i s i b l e} \\
& p_{x}^{m i s s i n g}=-212 \mathrm{GeV} \\
& p_{y}^{m i s s i n g}=55 \mathrm{GeV}
\end{aligned}
$$

$$
p_{T}^{m i s s i n g}=219 \mathrm{GeV}
$$

(the angle between jet 2 and MET is small)

Effective Mass

squark pair production (Mass = 1 TeV) using Pythia-6
squark to quark + neutralino (mass $=100 \mathrm{GeV}$)
Delphes 3 simulation
$p_{T}^{j_{1}} \geq 100 \mathrm{GeV} p_{T}^{j_{2}} \geq 100 \mathrm{GeV}$

Plot Credit : Rahool Kumar Barman

Signal Region [Meff-]	$\mathbf{2 j - 1 2 0 0}$	$\mathbf{2 j - 1 6 0 0}$	$\mathbf{2 j - 2 0 0 0}$	$\mathbf{2 j - 2 4 0 0}$	$\mathbf{2 j - 2 8 0 0}$
		MC expected events			
Diboson	28.17	14.37	7.02	3.09	0.86
Z/ $\gamma^{*}+$ jets	346.37	140.61	54.13	24.23	10.22
W+jets	142.39	47.49	18.33	8.23	3.37
$t \bar{t}(+$ EW $)+$ single top	21.40	5.84	2.54	1.13	0.32
			Fitted background events		
Diboson	28 ± 4	14.4 ± 2.3	7.0 ± 1.1	3.1 ± 0.5	0.86 ± 0.17
Z/ $\gamma^{*}+$ jets	337 ± 19	141 ± 10	61 ± 8	26.8 ± 3.1	11.4 ± 1.4
W+jets	136 ± 24	57 ± 16	19 ± 5	9.4 ± 2.6	3.1 ± 1.1
$t \bar{t}(+$ EW $)+$ single top	15 ± 4	3.1 ± 1.7	1.34 ± 1.0	0.4 ± 0.4	0.18 ± 0.15
Multi-jet	1.8 ± 1.8	0.34 ± 0.34	-	-	-
Total bkg	517 ± 31	216 ± 18	88 ± 9	40 ± 4	15.5 ± 1.9
Observed	582	204	70	33	17
$\langle\epsilon \sigma\rangle_{\text {obs }}^{95}[f b]$	3.6	1.00	0.42	0.30	0.32
$S_{\text {obs }}^{95}$	131	36	15	11	11
$S_{\text {exp }}^{95}$	78_{-21}^{+33}	43_{-12}^{+17}	24_{-6}^{+10}	15_{-4}^{+7}	10_{-3}^{+4}
$p_{0}(\mathrm{Z})$	$0.06(1.53)$	$0.50(0.00)$	$0.50(0.00)$	$0.50(0.00)$	$0.33(0.43)$

Transverse Mass

$$
\begin{gathered}
A \rightarrow B+X(i n v) \\
M_{A}^{2}=M_{B}^{2}+M_{X}^{2}+2\left(E_{T}^{B} E_{T}^{X} \cosh \left(\Delta \eta_{B X}\right)-\mathbf{p}_{T}^{B} \cdot \mathbf{p}_{T}^{X}\right) \\
\cosh (x) \geq 1 \\
E_{T}=\sqrt{p_{T}^{2}+m^{2}} \\
M_{T}^{2}=M_{B}^{2}+M_{X}^{2}+2\left(E_{T}^{B} E_{T}^{X}-\mathbf{p}_{T}^{B} \cdot \mathbf{p}_{T}^{X}\right)
\end{gathered}
$$

Transverse Mass

$$
\begin{aligned}
& A \rightarrow B+X(i n v) \\
& M_{A}^{2}=M_{B}^{2}+M_{X}^{2}+2\left(E_{T}^{B} E_{T}^{X} \cosh \left(\Delta \eta_{B X}\right)-\mathbf{p}_{T}^{B} \cdot \mathbf{p}_{T}^{X}\right) \\
& \cosh (x) \geq 1 \\
& \quad E_{T}=\sqrt{p_{T}^{2}+m^{2}} \\
& M_{T}^{2}=M_{B}^{2}+M_{X}^{2}+2\left(E_{T}^{B} E_{T}^{X}-\mathbf{p}_{T}^{B} \cdot \mathbf{p}_{T}^{X}\right) \quad M_{A}^{2} \geq M_{T}^{2}
\end{aligned}
$$

Suppose B and X are massless
Suppose B and X are massless

$$
M_{T}^{2}=2 E_{T}^{B} E_{T}^{X}(1-\cos \phi)
$$

Discovery of W boson in lepton + MET channel : Transverse Mass variable used

Stransverse Mass

Two invisible particles x particle coming from $A \Rightarrow x_{a}$ x particle coming from $B=>x_{b}$

The vector sum will give MET
Split the missing transverse energy into two parts

$$
p_{T}^{m i s}=p_{T}^{x_{a}}+p_{T}^{x_{b}}
$$

Assume the mass of the invisible particle and calculate

$$
M_{T}\left(x_{a}, B_{a}\right) \text { and } M_{T}\left(x_{b}, B_{b}\right)
$$

Take the Max of $M_{T}\left(x_{a}, B_{a}\right)$ and $M_{T}\left(x_{b}, B_{b}\right)$
Now vary the MET spliting* which minimises the $\operatorname{Max}\left(M_{T}\left(x_{a}, B_{a}\right) M_{T}\left(x_{b}, B_{b}\right)\right)$

$$
M_{T 2}=\min _{p_{T}^{m i s}=p_{T}^{x_{a}}+p_{T}^{x_{b}}}\left[\operatorname{Max}\left(M_{T}\left(x_{a}, B_{a}\right), M_{T}\left(x_{b}, B_{b}\right)\right)\right]
$$

MT2 Variable

squark pair production (Mass = 1 TeV) using Pythia-6
squark to quark + neutralino (mass $=100 \mathrm{GeV}$)
Delphes 3 simulation
(naively written code for MT2, slight discrepancy in result when compared with the public code)

α_{T} Variable

α_{T} Variable

$$
\alpha_{T}=\frac{p_{T}^{j_{2}}}{M_{T}^{j_{1} j_{2}}}=\sqrt{\frac{p_{T}^{j_{2}}}{p_{T}^{j_{1}}}} \frac{1}{\sqrt{2(1-\cos \Delta \phi)}}
$$

Pile up

Luminosity
Colliding beams

The number of events per second $=\frac{d R}{d t} \propto \sigma$

$$
\frac{d R}{d t}=\mathscr{L} \sigma
$$

$$
\begin{gathered}
\mathcal{L}=\text { luminosity }\left(\mathrm{cm}^{-2} \text { second }{ }^{-1}\right) \\
1 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=10^{-33} \mathrm{nb}^{-1} \mathrm{~s}^{-1}
\end{gathered}
$$

The proportionality constant is called Luminosity

Luminosity

Colliding beams

The number of events per second $=\frac{d R}{d t} \propto \sigma$

$$
\frac{d R}{d t}=\mathscr{L} \sigma
$$

$$
\begin{gathered}
\mathcal{L}=\text { luminosity }\left(\mathrm{cm}^{-2} \text { second }{ }^{-1}\right) \\
1 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=10^{-33} \mathrm{nb}^{-1} \mathrm{~s}^{-1}
\end{gathered}
$$

The proportionality constant is called Luminosity
Consider two gaussian bunches (spread in the x-y plane) containing N_{1} and N_{2} particles respectively These bunches collide with frequency f and N_{b} is the number of bunches in one beam then

$$
\mathscr{L}=\frac{N_{1} N_{2} f N_{B}}{4 \pi \sigma_{x} \sigma_{y}} \quad \begin{aligned}
& \text { where } \sigma_{x} \text { and } \sigma_{y} \text { are the Gaussian horizontal and vertical widths, } \\
& \text { respectively. }
\end{aligned}
$$

Example : $\sigma_{x}=\sigma_{y}=20 \mu m N_{B}=2800 f=40 \mathrm{MHz} N_{1}=N_{2}=10^{11} \mathscr{L} \sim 10^{34} \mathrm{~cm}^{-2} s^{-1}$

Pile up

Each proton bunch contains billions of protons
Consider Instantaneous luminosity $10^{34} \mathrm{~cm}^{-2} s^{-1}=10^{7} \mathrm{mb}^{-1} \mathrm{~Hz}$

Proton proton cross section ~ 100 mb (dominated by inelastic processes)

Event rate $=10^{7} \mathrm{mb}^{-1} \mathrm{~Hz} \times 100 \mathrm{mb}=10 \times 10^{8} \mathrm{~Hz}$

Pile up

Each proton bunch contains billions of protons
Consider Instantaneous luminosity $10^{34} \mathrm{~cm}^{-2} s^{-1}=10^{7} \mathrm{mb}^{-1} \mathrm{~Hz}$

Proton proton cross section ~ 100 mb (dominated by inelastic processes)

Event rate $=10^{7} \mathrm{mb}^{-1} \mathrm{~Hz} \times 100 \mathrm{mb}=10 \times 10^{8} \mathrm{~Hz}$

Time gap between two bunch crossing $=25 \mathrm{~ns}=25 \times 10^{-9} \mathrm{~Hz}^{-1}$

Expected number of event per $25 \mathrm{~ns}=25$ events

In any bunch crossing we expect about 25 events superimposed on interesting process like Higgs production, top quark , new physics etc. => Pileup

Pile up

Neutrino

Pile up

1 Event takes 1-2 MB of storage : storage required for 109. Events per second $=1000 \mathrm{~TB} / \mathrm{s}$!!

Jets@HL-LHC

Number of jets increases with PU

REF:CMS L1 TDR 2020

LLP Model: $p p \rightarrow X X, X \rightarrow q \bar{q}$

Jet info
Jet parameter $=0.4$

$$
\mathrm{p}_{\mathrm{T}}>60 \mathrm{GeV}
$$

$$
|\eta|<2.5
$$

BB, Swagata Mukherjee, Rhitaja Sengupta, Prabhat Solanki e-Print: 2003.03943, JHEP 2020

Event rates

$$
\begin{array}{ll}
\text { Inelastic events : } 10^{9} \mathrm{~Hz} \text { (cross section100 mb) } \\
\text { W Events : } & \text { (Cross section) } \\
\text { Top quark Events: } & \text { (Cross section } \sim 1000 \mathrm{pb}) \\
\text { Higgs Events : } & \text { (cross section } \sim 50 \mathrm{pb} \text {) } \\
\text { New Physics Rate : } & \text { (Cross section } 1 \mathrm{fb} \text {) }
\end{array}
$$

Event selection should be sensitive at $1: 1011$ level
Dedicated selection conditions required to select a few interesting events => Trigger

Trigger system in CMS

Level I (L1) Trigger : Coarse Granularity, Hardware based, fast decision (3 micro second), Output 100 KHz

High Level Trigger (HLT) : Full Granularity, Software based, avg time req:300 milli second, Output 1 KHz

Low or zero sensitivity to new physics with low-mass.

Trigger Menu@ HL-LHC(PU=200)

L1 Trigger seeds	Offline Threshold(s) at 90% or 95% (50%) [GeV]	Rate $\langle P U\rangle=200$ $[\mathrm{kHz}]$	Additional Requirement(s) $[\mathrm{cm}, \mathrm{GeV}]$	Objects plateau efficiency [\%]
Single/Double/Triple Lepton (electron, muon) seeds				
Single TkMuon	22	12	$\|\eta\|<2.4$	95
Double TkMuon	15,7	1	$\eta \mid<2.4, \Delta z<1$	95
Triple TkMuon	5,3,3	16	$\eta \mid<2.4, \Delta z<1$	95
Single TkElectron	36	24	$\|\eta\|<2.4$	93
Single TkIsoElectron	28	28	$\|\eta\|<2.4$	93
TkIsoElectron-StaEG	22, 12	36	$\|\eta\|<2.4$	93, 99
Double TkElectron	25,12	4	$\|\eta\|<2.4$	93
Single StaEG	51	25	$\|\eta\|<2.4$	99
Double StaEG	37,24	5	$\|\eta\|<2.4$	99
Photon seeds				
Single TkIsoPhoton	36	43	$\|\eta\|<2.4$	97
Double TkIsoPhoton	22,12	50	$\|\eta\|<2.4$	97
Taus seeds				
Single CaloTau	150(119)	21	$\|\eta\|<2.1$	99
Double CaloTau	90,90(69,69)	25	$\eta \mid<2.1, \Delta R>0.5$	99
Double PuppiTau	52,52(36,36)	7	$\eta \mid<2.1, \Delta R>0.5$	90
Hadronic seeds (jets, H_{T})				
Single PuppiJet	180	70	$\|\eta\|<2.4$	100
Double PuppiJet	112,112	71	$\|\eta\|<2.4, \Delta \eta<1.6$	100
Puppi $H_{\text {T }}$	450(377)	11	jets: $\|\eta\|<2.4, p_{\mathrm{T}}>30$	100
QuadPuppiJets-Puppi $H_{\text {T }}$	70,55,40,40,400(328)	9	jets: $\|\eta\|<2.4, p_{\mathrm{T}}>30$	100,100
$E_{T}^{\text {miss }}$ seeds				
Puppi $E_{\mathrm{T}}^{\text {miss }}$	200(128)	18		100

More and More backgrounds

Non Collisional: Some trigger fired and a cosmic muon can pass the detector at the same time

If it passes through the both hemisphere of the detector it will be identified as two back to back muons

Removal: impact parameter cut, timing cut and angular cut between two muons

Beam halo: Collision of proton beam with some part of the LHC part, mostly collimator (required to clean stray particles)

Beam Gas: Collision of proton beam with gas molecule inside the beam pipe (both elastic and inelastic)
Detector induced: Some parts of the detector may not work or misfire => change the 4 momentum measurements Of the particles or generate missing energy signal

Physics beyond the standard model

Many BSM models and a large number of possible signatures

No hint of BSM physics so far ..

Where is BSM physics hiding?
Three Possibilities:

- BSM particles are very heavy \Rightarrow Not accessible at the LHC
- BSM particles are just above the current limit \rightarrow LHC will discover soon
- New particles are within the reach of LHC \rightarrow search methods are not very sensitive
A. Huge background (top corridor , Compressed spectrum)

Are we missing something ??

Nature of the new physics is completely unknown Probably very unconventional, exotic final states

Not yet searched for?
Experimentally challenging?

Nature of the new physics is completely unknown Probably very unconventional, exotic final states

Not yet searched for?
Experimentally challenging?
One such interesting possibility : Long-lived particles(LLPs)

Long-lived Particle (LLP)

Nature of the new physics is completely unknown Probably very unconventional, exotic final states

Not yet searched for?
Experimentally challenging?

One such interesting possibility : Long-lived particles(LLPs)

Presence of LLP is not unnatural
Many long-lived particles are present in our world

Particle	Lifetime
Muon	2.2 picosecond
Proton	$>10^{30}$ year
Neutron	878 second
$B+$	1600 femtosecond
$\pi+$	26 nanosecond

Why are they long-lived?

Reason 1 : Heavy particle propagator

Pion decay in the SM

Huge suppression from the W boson propagator !

Why are they long-lived?
Neutron decay in the SM
Reason 2 : Phase space suppression

Why are they long-lived?
Neutron decay in the SM
Reason 2 : Phase space suppression

$$
\Delta=M_{n}-M_{p} \sim 1.3 \mathbf{M e V}
$$

Why are they long-lived?

Reason 3 : Small coupling
B+ decay in the SM

Freeze-in Dark Matter

Typical Coupling strength $\sim 10^{-12}$ or less

Many final states are possible depending on the spectrum and the type of coupling

$$
\begin{gathered}
\tilde{g} \rightarrow j j j \quad[G l u i n o ~ L S P, ~ \\
\lambda \text { "coupling }] \quad \chi_{0}^{1} \rightarrow \gamma / Z+\text { Gravitino } \quad[G M S B] \\
\text { And many other possibilities }
\end{gathered}
$$

If the Decay width of the gluing exceeds $\Lambda_{Q C D}$, it will form R-hadron (M. Chanowitz, S. Sharpe Physics Letters B 1983)

MSSM with neutral wino as the lightest supersymmetric particle
Charged wino becomes heavier than the neutral wino because of electroweak radiative corrections
For pure wino case

The decay modes are

$$
\begin{gathered}
\chi^{ \pm} \rightarrow \chi^{0}+\pi^{ \pm} \\
\chi^{ \pm} \rightarrow \chi^{0}+l^{ \pm}+\bar{\nu}_{l}
\end{gathered}
$$

One loop correction to the decay width is not very significant(2-4\%)

[^0]

> For pure wino, the Decay length can be \sim a few cm

For higgsino, mass difference can be higher => The length of the track is smaller

$$
\Delta M=M_{\tilde{W}^{ \pm}}-M_{\tilde{W}^{0}} \sim 160 \mathbf{M e V}
$$

Dark Sectors

Standard Model

Dark Sectors

Standard Model

The dark sector particles are singlet under SM gauge groups Dark sector particles talk to the SM particles through a portal

Dark Sectors

The dark sector particles are singlet under SM gauge groups Dark sector particles talk to the SM particles through a portal

Lowest dimensional operator

Vector Portal: $\quad \epsilon B^{\mu \nu} X_{\mu \nu}$
Scalar Portals: $\quad \kappa\left(H^{\dagger} H\right) S+\lambda\left(H^{\dagger} H\right) S^{2}$
Neutrino Portal: yHLN

Higher dimensional operator also possible

ALP: $\quad \epsilon a F^{\mu \nu} \tilde{F}_{\mu \nu}$
The new couplings can be very small in principle
Possibility of Small Decay width
LLPs!!

Recent survey: Exploring Dark Sector Portals with High Intensity Experiments
B. Batell, N. Blinov, C. Hearty, R. McGehee arXiv:2207.06905

LLP production

Decay

Suppose the coupling λ is small: X is LLP
Easy to make X an LLP

LLP production
Decay

Suppose the coupling λ is small: X is LLP
Easy to make X an LLP

Production mode

Single production cross section $\propto \lambda^{4}$
For very small coupling X will have high decay length and small cross section
"High" and "small" will depend on the process and the detector

LLP production

Decay

Suppose the coupling λ is small: X is LLP
Easy to make X an LLP

Single production cross section $\propto \lambda^{4}$
For very small coupling X will have high decay length and small cross section
"High" and "small" will depend on the process and the detector

In most of the models, mass and lifetime of the LLP is not fully bounded !

LLP searches in Experiments

Similar efforts from ATLAS, LHCb.. LLP white paper, dedicated conference on LLPs

CMS Summary plot
LLP simulation and interpretation is not straightforward for theorists

Example 1 : Displaced vertex

$$
p p \rightarrow X X, X_{L L P} \rightarrow e^{+} e^{-}
$$

X is the long-lived particle

Example 1 : Displaced vertex

$$
p p \rightarrow X X, X_{L L P} \rightarrow e^{+} e^{-}
$$

X is the long-lived particle

Identify displaced electrons and find out the secondary vertex

Nice features

$$
p p \rightarrow X_{L L P} X_{L L P}, X_{L L P} \rightarrow q+\bar{q} \text { (jets) }
$$

- Displaced multiple tracks
- Secondary vertices
- Calorimeter energy deposits are not associated with tracks from primary vertex=> trackless jet

Displaced jets

Energy deposit in the calorimeter, no associated tracks from the primary vertex

Displaced jets
Nice features

- Displaced multiple tracks
- Secondary vertices
- Calorimeter energy deposits are not associated with tracks from primary vertex=> trackless jet

Displaced jets

Energy deposit in the calorimeter, no associated tracks from the primary vertex

Prompt QCD jets
Energy deposit in the calorimeter, associated tracks from the primary vertex

Zero background ??

R parity violation

View along the beam axis

Challenge 1

SM backgrounds

- There are a few SM hadrons which can also give rise to displaced vertex signature
- their lifetimes and masses are known => better handle

SM backgrounds

- There are a few SM hadrons which can also give rise to displaced vertex signature
- their lifetimes and masses are known => better handle
- Highly energetic hadrons can interact with the material of the detector
- Accidental crossing of tracks and merged vertices

Decay products

LLP

Multiple unrelated tracks

Material veto map (CMS) 2012.01581

SM backgrounds

- Use material map veto : reject displaced vertices if it falls on the veto region(dense region) => residual backgrounds come from less dense region, LLP hadrons and accidental crossing => mostly peaks in the low invariant mass low multiplicity region

See ATLAS paper 2301.13866 for example

BB and Prabhat Solanki arXiv:2308.05804, JHEP 23/24

Identification of light LLPs with low multiplicity may be difficult !!

Challenge 2
(Not a real one !!)

Simulation challenges faced by theorists

Consider a process: p p -> X Y
X-> quarks + invisible particle , Y -> quarks + leptons + invisible particles (Generate parton level process: Madgraph, Calchep,..)

Shower and Hadronization
(Pythia, Herwig,...)

Apply detector response
Fast simulation: Delphes
Parametrised detector response applied on reconstructed objects
Question: Can we directly use fast detector simulation for LLPs ?

Prompt vs LLP (Non-pointing nature)

Orientation from the beam axis of the particle $=30$ degree

Prompt vs LLP (Non-pointing nature)

In experiment, particle $\mathrm{s} \eta-\phi$ corresponds to the $\eta-\phi$ of the detector cell where it deposits its energy

Mismatch of displaced particle' s $\eta-\phi$ direction with $\eta-\phi$ segmentation of the detector

Energy deposition
in the calorimeter cell

layered structure/depth segmentation needed to visualise the effect
Fast detector simulations do not have such layered structure (e.g. Delphes)
See non-pointing photon search by CMS collaboration

Energy deposition: prompt vs displaced

$$
X(\text { LLP }) \rightarrow Z+i n v
$$

$$
\text { Energy } \sim 400-500 \mathrm{GeV}
$$

Physical area taken by the decay products become small with distance and they mostly get contained within fewer $\eta-\varphi$ towers.

CNN can discriminate displaced vs prompt energy deposition

Discrimination between prompt and long-lived particles using convolutional neural network
BB, Swagata Mukherjee and Rhitaja Sengupta arXiv:1904.04811, JHEP 2019

[^1]Fast convolutional neural networks for identifying long-lived particles in a high-granularity calorimeter
J. Alimena, Y. Iiyama and J. Kieseler 2004.10744 [hep-ex]
average of images: prompt vs displaced

[^2]
Challenge 3

```
Where LLP decays?
```

$$
p p \rightarrow X X, X \rightarrow e^{+} e^{-}
$$

LLP decays inside the tracker

$$
p p \rightarrow X X, X \rightarrow e^{+} e^{-}
$$

LLP decays inside the tracker

$$
p p \rightarrow X X, X \rightarrow e^{+} e^{-}
$$

Challenge 4

Disappearing Charged track
$p p \rightarrow X^{+} X^{-}, X^{ \pm} \rightarrow Y_{\text {invisible }}+$ soft particles,

Significant improvements in the analysis techniques

Challenge 5

disappearing tracks => easy for identification?

Soft particle	disappearing tracks $=>$ easy for identification?

Soft particle

Tracking not available at Level 1 Use jet or Missing Transverse energy (MET) trigger to store the events and reconstruct the disappearing track in the offline analysis

ATLAS analysis 2201.02472

[^3]$$
\text { MET }>110 \mathrm{GeV}
$$
\qquad

ATLAS analysis 1907.10037

Use single or double photon trigger to
Single photon $\mathrm{p}_{\mathrm{T}}>140 \mathrm{GeV}$
Double photon $\mathrm{p}_{\mathrm{T}}>50 \mathrm{GeV}$
> store the event
d
\qquad路

LLP:R-parity conserving NMSSM

Simple idea: trigger the event with prompt leptons, identify secondary vertex offline.

LLP:R-parity violating MSSM

Combining displaced tracking, timing and prompt lepton trigger

Wino
Higgsino
Bino $\mathcal{O}(1) \mathrm{TeV}$
Singlino(LSP)
$\mathcal{O}(200) \mathrm{GeV}$

Apply cuts on the number of tracks and invariant mass of the secondary vertex to kill Instrumental background

Significance grid at the HL-LHC

> Amit Adhikary, Rahool Kumar Barman, BB, Amandip De, Rohini M. Godbole, Suchita Kulkarni e-Print: 2207.00600 , PRD 2023

HL-LHC : effect of Pileup

Average number of pileup for $\mathrm{HL}-\mathrm{LHC}=140$ to 200
Too many particles, multiple tracks can be associated with the the energy deposits => average energy of jets will increase

HL-LHC: Triggering challenge more severe because of high pileup

Jet info
Jet parameter $=0.4$
$\mathrm{p}_{\mathrm{T}}>60 \mathrm{GeV}$
$\|\eta\|<2.5$

Calorimeter jet multiplicity dominated by PU jets

RB Swaoata Mulkheriee Rhitaia Senounta Prabhat Snlanki
LLP Model: $p p \rightarrow X X, X \rightarrow q \bar{q}$

Only narrow jet will not be sufficient to suppress background Many Variables can be constructed
Single narrow jet trigger with $\mathrm{pT}>60 \mathrm{GeV}$ with strict cuts on tracking variables may be used.

Example 2: Timing Information
 $$
p p \rightarrow X X, X \rightarrow e^{+} e^{-}
$$

Decay products of heavy LLPs will reach late compared to the prompt particles
T1 -T0 can be used as a discriminant

Signature of LLPs

Example 2 : Timing Information
 $$
p p \rightarrow X X, X \rightarrow e^{+} e^{-}
$$

Decay products of heavy LLPs will reach late compared to the prompt particles
T1 -T0 can be used as a discriminant

ECAL timing

The Phase-2 Upgrade of the CMS Level-1 Trigger, CERN-LHCC-2020-004

ECAL barrel detector will also provide precise timing information

30 ps timing resolution for 20 GeV energy deposition at the beginning of HL-LHC

Energy weighted mean time

$$
\Delta T_{\text {mean }}^{E v t}=\frac{\left(T_{1}-T_{0}\right) * E_{1}+\left(T_{2}-T_{0}\right) * E_{2}+\left(T_{3}-T_{0}\right) * E_{3}+\left(T_{4}-T_{0}\right) * E_{4}}{E_{1}+E_{2}+E_{3}+E_{4}}
$$

$\mathrm{T} 0=$ time required by a photon to reach the crystal from the origin

Electromagnetic energy deposits inside a jet

ECAL timing

ECAL barrel detector will also provide precise timing information

30ps timing resolution for 20 GeV energy deposition at the beginning of HL-LHC

$$
\Delta T_{\text {mean }}^{E w t}=\frac{\sum \Delta T_{i} \times E_{i}}{\sum E_{i}}, i \equiv \text { crystals inside the jet }
$$

distribution is different for high decay length QCD jets can also have a long tail

[^4] e-Print: 2112.04518, JHEP 2022

Why do prompt QCD jets having high time delays?

Intrinsic spread of the beam-spot in both the temporal and longitudinal direction Particles like KS, Λ, Ω etc. are long lived in the detector ECAL resolution changes with time

[^0]: Precise Estimate of Charged Wino Decay Rate M. IBe, M. Mishima,
 Y. Nakayama and S. Shirai arXiv: 2210.16035

[^1]: S. Banerjee, G. Bélanger, BB, F. Boudjema, R. Godbole and S. Mukherjee Phys.Rev.D 98 (2018) 11, 115026

[^2]: Click Here

[^3]:

[^4]: BB, Tapasi Ghosh, Rhitaja Sengupta, Prabhat Solanki

