

Б

Dimension-6 Gauge-Higgs SMEFT operators

CP-odd

Grzadkowski	
JHEP10	
(2010	
085	

CP-even

$Q_{H\widetilde{W}B} = \epsilon_{\mu}$	$Q_{H\widetilde{B}}$	$Q_{H\widetilde{W}} = \epsilon_{\mu}$	$Q_{H\widetilde{G}} = \epsilon_{i}$	$Q_{\widetilde{W}} = \epsilon^{IJ}$	$Q_{\widetilde{G}} = f^A$
$_{\nulphaeta}\left(H^{\dagger}\sigma^{I}H ight)W^{Ilphaeta}B^{\mu u}$	$\epsilon_{\mu ulphaeta}\left(H^{\dagger}H ight)B^{lphaeta}B^{\mu u}$	$_{\mu ulphaeta}\left(H^{\dagger}H ight)W^{Ilphaeta}W^{I\mu u}$	$_{\mu\nulphaeta}\left(H^{\dagger}H\right)G^{Alphaeta}G^{A\mu u}$	${}^{^{T}K}\epsilon_{\mu\nulphaeta}W^{Ilphaeta}W^{J u}W^{K ho\mu}$	$^{BC}\epsilon_{\mu ulphaeta}G^{Alphaeta}G^{B u}G^{C ho\mu}$

$Q_{ m HWB}$	$Q_{ m HB}$	$Q_{\rm HW}$	$Q_{ m HG}$	$Q_{ m W}$	$Q_{ m G}$	
$\left(H^{\dagger} au^{a} H\right) W_{\mu u}{}^{a} B^{\mu u}$	$\left(H^{\dagger}H ight)B_{\mu u}B^{\mu u}$	$\left(H^{\dagger}H ight)W_{\mu u}{}^{a}W^{a,\mu u}$	$\left(H^{\dagger}H ight)G_{\mu u}{}^{a}G^{a,\mu u}$	$\epsilon^{IJK}W^{I,\mu}_{\nu}W^{J,\nu}_{\rho}W^{K,\rho}_{\mu}$	$f^{ABC}G^{A,\mu}_{\nu}G^{B,\nu}_{ ho}G^{C, ho}_{\mu}$	

 ϵ is the anti-symmetric (Levi-Civita) tensor.

* Heavy fermions:
$$2i\sigma_{\rho\sigma}\gamma_5 = \epsilon_{\mu\nu\rho\sigma}\sigma^{\mu\nu}$$

Integrating out heavy fermions generates the CPV operators at 1-loop except $Q\tilde{w}$ and $Q\tilde{c}$

SM extended by heavy fermions

SDB, J Chakrabortty, C. Englert, M Spannowsky, P. Stylianou PhyRevD 103.055008

Vector-like lepton (VLL) model study

$$\Sigma_{L,R} = \binom{\eta}{\xi}_{L,R} : (1,2,\mathcal{Y}), \ \eta'_{L,R} : (1,1,\mathcal{Y}+\frac{1}{2}), \ \xi'_{L,R} : (1,1,\mathcal{Y}-\frac{1}{2}).$$

$$\begin{split} \mathcal{L}_{\mathrm{DS}} &= \bar{\Sigma} (iD_{\Sigma} - m_{\Sigma}) \Sigma + \bar{\eta}' (iD_{\eta} - m_{\eta}) \eta' + \bar{\xi}' (iD_{\xi} - m_{\xi}) \xi' \\ &- \left\{ \bar{\Sigma} \tilde{H} (Y_{\eta_{L}} \mathbb{P}_{L} + Y_{\eta_{R}} \mathbb{P}_{R}) \eta' + \bar{\Sigma} H (Y_{\xi_{L}} \mathbb{P}_{L} + Y_{\xi_{R}} \mathbb{P}_{R}) \xi' + \mathrm{h.c.} \right\} \end{split}$$

SDB, J Chakrabortty, C. Englert, M Spannowsky, P. Stylianou arXiv:2103.15861

CPV operator diagrams

1-loop matching result

$\begin{aligned} & \frac{g_W g_Y}{60} \left[(3 - 20\mathcal{Y}) \alpha_{\xi} ^2 + (3 + 20\mathcal{Y}) \alpha_{\eta} ^2 \right. \\ & + 5(-1 + 4\mathcal{Y}) \beta_{\xi} ^2 - 5(1 + 4\mathcal{Y}) \beta_{\eta} ^2 \right] \end{aligned}$	Q_{HWB}
$-\frac{^{7}g_{W}^{2}}{^{1}20}\left(\alpha_{\xi} ^{2}+ \alpha_{\eta} ^{2}\right)+\frac{g_{W}^{2}}{^{24}}\left(\beta_{\xi} ^{2}+ \beta_{\eta} ^{2}\right)$	Q_{HW}
$\begin{split} &\frac{g_{Y}^{2}}{120}\left[(-7+40\mathcal{Y}-80\mathcal{Y}^{2}) \alpha_{\xi} ^{2}+(-7-40\mathcal{Y}-80\mathcal{Y}^{2}) \alpha_{\eta} ^{2}\right.\\ &\left.+(5-40\mathcal{Y}+80\mathcal{Y}^{2}) \beta_{\xi} ^{2}+(5+40\mathcal{Y}+80\mathcal{Y}^{2}) \beta_{\eta} ^{2}\right] \end{split}$	Q_{HB}
$ \begin{array}{l} -\frac{4}{5} \left(\left \alpha_{\xi} \right ^{2} - \left \alpha_{\eta} \right ^{2} \right)^{2} - \frac{2}{3} \left(\left \beta_{\xi} \right ^{2} - \left \beta_{\eta} \right ^{2} \right)^{2} \\ + \frac{2}{3} \left(\left \beta_{\xi} \right ^{2} \left \alpha_{\eta} \right ^{2} + \left \alpha_{\xi} \right ^{2} \left \beta_{\eta} \right ^{2} \right) - 2 \left(\left \alpha_{\eta} \right ^{2} \left \beta_{\eta} \right ^{2} + \left \alpha_{\xi} \right ^{2} \left \beta_{\xi} \right ^{2} \right) \\ + \frac{2}{3} \left(\alpha_{\eta}^{2} \left(\beta_{\eta}^{*} \right)^{2} + \left(\alpha_{\eta}^{*} \right)^{2} \beta_{\eta}^{2} \right) + \frac{4}{3} \left(\alpha_{\xi} \beta_{\xi}^{*} \alpha_{\eta}^{*} \beta_{\eta} + \alpha_{\xi}^{*} \beta_{\xi} \alpha_{\eta} \beta_{\eta}^{*} \right) \end{array} $	Q_{HD}
$ \begin{array}{l} -\frac{2}{5} \left(\alpha_{\eta} ^{2} + \alpha_{\xi} ^{2} \right)^{2} - \frac{1}{3} \left(\beta_{\eta} ^{2} + \beta_{\xi} ^{2} \right)^{2} \\ -\frac{1}{3} \left(\beta_{\xi} ^{2} \alpha_{\eta} ^{2} + \alpha_{\xi} ^{2} \beta_{\eta} ^{2} \right) - 1 \left(\alpha_{\eta} ^{2} \beta_{\eta} ^{2} + \alpha_{\xi} ^{2} \beta_{\xi} ^{2} \right) \\ -\frac{2}{3} \left(\alpha_{\xi} \beta_{\xi}^{*} \alpha_{\eta}^{*} \beta_{\eta} + \alpha_{\xi}^{*} \beta_{\xi} \alpha_{\eta} \beta_{\eta}^{*} \right) + \frac{1}{3} \left(\alpha_{\eta}^{2} \left(\beta_{\eta}^{*} \right)^{2} + \left(\alpha_{\eta}^{*} \right)^{2} \beta_{\eta}^{2} \right) \end{array} $	$Q_{H\square}$
$ \begin{aligned} & -\frac{2}{15} \left(\alpha_{\eta} ^{6} + \alpha_{\xi} ^{6} \right) + \frac{2}{3} \left(\beta_{\eta} ^{6} + \beta_{\xi} ^{6} \right) \\ & +\frac{2}{3} \left(\alpha_{\eta} ^{4} \beta_{\eta} ^{2} + \alpha_{\xi} ^{4} \beta_{\xi} ^{2} \right) + 2 \left(\alpha_{\eta} ^{2} \beta_{\eta} ^{4} + \alpha_{\xi} ^{2} \beta_{\xi} ^{4} \right) \\ & +\frac{2}{3} \left(\alpha_{\eta} ^{2} \left((\alpha_{\eta}^{*})^{2} \beta_{\eta}^{2} + \alpha_{\eta}^{2} (\beta_{\eta}^{*})^{2} \right) + \alpha_{\xi} ^{2} \left((\alpha_{\xi}^{*})^{2} \beta_{\xi}^{2} + \alpha_{\xi}^{2} (\beta_{\xi}^{*})^{2} \right) \right) \\ & +2 \left(\beta_{\eta} ^{2} \left((\alpha_{\eta}^{*})^{2} \beta_{\eta}^{2} + \alpha_{\eta}^{2} (\beta_{\eta}^{*})^{2} \right) + \beta_{\xi} ^{2} \left((\alpha_{\xi}^{*})^{2} \beta_{\xi}^{2} + \alpha_{\xi}^{2} (\beta_{\xi}^{*})^{2} \right) \right) \\ & -2\lambda_{H} \mathcal{C}_{F} + \frac{4}{5} \lambda_{H} \left(\alpha_{\xi} ^{2} + \alpha_{\eta} ^{2} \right) + \frac{4}{3} \lambda_{H} \left(\beta_{\xi} ^{2} + \beta_{\eta} ^{2} \right) \end{aligned} $	Q_{H}
$g_W^3/180$	Q_W
$\frac{g_W g_Y}{6} \left[(1+6\mathcal{Y}) \mathrm{Im}[Y_{\eta_L} Y_{\eta_R}^*] + (1-6\mathcal{Y}) \mathrm{Im}[Y_{\xi_L} Y_{\xi_R}^*] \right]$	$Q_{H\widetilde{W}B}$
$-rac{g_{VL}}{12} { m Im} [Y_{\eta_L} Y^*_{\eta_R} + Y_{ig \xi_L} Y^*_{ig \kappa_R}]$	$Q_{H\widetilde{W}}$
$-\frac{g_{Y}^{\chi}}{12}\left[(1+6\mathcal{Y}+12\mathcal{Y}^{2})\mathrm{Im}[Y_{\eta_{L}}Y_{\eta_{R}}^{*}]+(1-6\mathcal{Y}+12\mathcal{Y}^{2})\mathrm{Im}[Y_{\xi_{L}}Y_{\xi_{R}}^{*}]\right]$	$Q_{H\widetilde{B}}$
Wilson Coefficients $\left(C_i \times \frac{1}{16\pi^2}\right)$	Operators

$ eta$ $\mathcal{C}_F = \mathcal{C}_{K4} = \mathcal{C}_F$		$Q_{ad}^{\left(1 ight) }$	$Q_{qu}^{(1)}$	Q_{le}	$Q_{lequ}^{\left(1 ight) }$	$Q_{quqd}^{\left(1 ight) }$	Q_{ledq}	Q_{dH}	Q_{uH}	Q_{eH}
$egin{aligned} &i ^2 = rac{1}{4} \left(Y_{i_L} ^2 ight) \ &= -rac{2}{5} \left(lpha_{\xi} ^4 - 4 ight _{2} ight) \ &+ 2 \left(lpha_{\eta} ^2 eta_{\eta} ^2 ight) \ &+ 2 \left(lpha_{\eta} ^2 eta_{\eta} ^2 ight) \ &+ rac{4}{3} \left((lpha_{\eta}^*)^2 eta_{\eta}^2 + ight) \ &= rac{1}{5} \left(lpha_{\xi} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + lpha ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left(Y_{\xi_L} ^2 + Y_{\xi_L} ^2 ight) \ &= rac{1}{3} \left[\left($	$ x_{i_L} ^2 = rac{1}{A} \left(Y_{i_L} ^2 \right)$							$-\frac{1}{2} \operatorname{Re}\left[\left(Y_{\mathrm{SM}}^{d}\right)\right]$	$-\frac{1}{2} \mathrm{Re} \left[\left(Y_{\mathrm{SM}}^u \right) \right]$	$-\frac{1}{2} \operatorname{Re} \left[\left(\underline{Y_{\mathrm{SM}}^e} \right) \right]$
$egin{aligned} &2 + Y_{i_R} ^2 - Y_{i_L}^* \ &+ lpha_\eta ^2 + lpha_\eta ^4) + \ &+ lpha_\xi ^2 eta_\xi ^2) + rac{2}{3} (eta_\eta ^2) + \ &+ lpha_\eta ^2)^2 + (lpha_\xi^2)^2 eta_\xi^2 \ &lpha_\eta^2 (eta_\eta)^2 + (lpha_\xi)^2 eta_\xi^2 \ &+ Y_{\xi_R} ^2) \operatorname{Im} \Big[Y_{\xi_L} Y_{\xi_L}^* Y_{\xi_L}^* \Big] \end{aligned}$	$ Y_{i_R} ^2 + Y_{i_R} ^2$	$-\frac{1}{2}(Y$	$-\frac{1}{2}(Y$	$-\frac{1}{2}(Y$	$-\left\{ \left(Y^e_{_{ m SM}} ight)^{\dagger} ight.$	$\left\{ \left(Y^{u}_{ m SM} ight)^{\dagger} ight ($	$\left\{ \left(Y^e_{_{ m SM}} ight) ight. ight.$	$\left[\right]^{\dagger} \left] \mathcal{C}_{F} + \frac{1}{2} \mathrm{Im} \left[\right]$	$\left \right ^{\dagger} \left \mathcal{C}_F - \frac{1}{2} \mathrm{Im} \right $	$\left \mathcal{C}_{F} + \frac{1}{2} \mathrm{Im} \right $
$egin{aligned} &Y_{i_R} - Y_{i_L}Y_{i_R}^* \ & = Y_{i_L}Y_{i_R}^* \ & = -rac{4}{3}\left(eta_\eta ^4 + eta_arepsilon ^2 + lpha_arepsilon ^2 ight)^2 + lpha_arepsilon ^2 + lpha_arepsilon ^2 ight)^2 + rac{4}{3} + lpha_arepsilon^2\left(eta_arepsilon^2 ight)^2 ight) + rac{4}{3} + lpha_arepsilon^2\left(eta_arepsilon^2 ight)^2 ight)^2 + rac{4}{3} + lpha_arepsilon^2\left(eta_arepsilon^2 ight)^2 ight)^2 + rac{4}{3} + rac{4}{3} \left[eta_\eta ^2 ight]^2 + rac{4}{3} + rac{4}{3} \left[eta_\eta ^2 ight]^2 ight)^2 + rac{4}{3} + rac{4}{3} \left[eta_\eta ^2 ight]^2 ight)^2 + rac{4}{3} + rac{4}{3} \left[eta_\eta ^2 ight]^2 ight)^2 + rac{4}{3} + rac{4}{3} \left[eta_\eta ^2 ight]^2 ight)^2 + rac{4}{3} + rac{4}{3} \left[eta_\eta ^2 ight]^2 ight]^2 + rac{4}{3} \left[eta_\eta ^2 ight]^2 + rac{4}{3} \left[eta_\eta ^2 ight]^2 + rac{4}{3} \left[eta_\eta ^2 ight]^2 ight]^2 + rac{4}{3} \left[eta_\eta ^2 ight]^2 + rac{4}{3} \left[eta_\eta ^2 ight]^2 ight]^2 + rac{4}{3} \left[eta_\eta ^2 ight]^2 + rac{4}{3} \left[eta_\eta ^2 ight]^2 ight]^2 + rac{4}{3} \left[eta_\eta ^2 ight]^2 + rac{4}{3} \left[eta_\eta ^2 ight]^2 ight]^2 + rac{4}{3} \left[eta_\eta ^2 ight]^2 + rac{4$	$Y_{i_R} + Y_{i_L} Y_{i_R}^*$	$\left(rac{rd}{\mathrm{SM}} ight)^{\dagger} \left(Y^{d}_{\mathrm{SM}} ight) \mathcal{C}_{\mathrm{I}}$	$\left(Y_{_{\mathrm{SM}}}^{ru} \right)^{\dagger} \left(Y_{_{\mathrm{SM}}}^{u} \right) \mathcal{C}_{I}$	$\left(\sum_{\mathrm{SM}}^{re} \right)^{\dagger} \left(Y_{\mathrm{SM}}^{e} \right) \mathcal{C}_{I}$	$\left(Y^u_{_{ m SM}} ight)^\dagger \mathcal{C}_{K4}$ -	$ig(Y^d_{ ext{SM}}ig)^\dagger \mathcal{C}_{K4} +$	$\left(Y^d_{ m SM} ight)^{\dagger} \mathcal{C}_{K4} +$	$\left(Y^d_{ m SM} ight)^\dagger ight] ilde{\mathcal{C}}_F +$	$\left(Y^u_{_{\mathrm{SM}}} ight)^\dagger \int ilde{\mathcal{C}}_F +$	$\left(Y^e_{_{\mathrm{SM}}}\right)^\dagger \bigg] \tilde{\mathcal{C}}_F +$
$ \begin{split} \Big) \ , \\ \beta_{\eta} ^{2} + \beta_{\xi} ^{4}) \\ \beta_{\eta} ^{2}) \\ (\alpha_{\xi}\beta_{\xi}^{*}\alpha_{\eta}^{*}\beta_{\eta} + \alpha_{\xi}^{*}\beta_{\xi} \\ (\alpha_{\xi}\beta_{\xi}^{*}\alpha_{\eta}^{*}\beta_{\eta} + \alpha_{\xi}^{*}\beta_{\xi} \\ Y\eta_{R} ^{2}) Im \left[Y\eta_{L}\right] \end{split} $,	K4	K4	K4	$+ h.c. \}$	h.c.	h.c.}	- $2\lambda_{H}\left(Y_{ ext{SM}}^{d} ight)^{\dagger}$ (- $2\lambda_{H}\left(Y_{ ext{SM}}^{u} ight)^{\dagger}$ (- $2\lambda_{H}\left(Y^{e}_{ ext{SM}} ight)^{\dagger}$ (
$\left[\left[X_{\eta}^{*} \beta_{\eta}^{*} \right] \right]$								$\left(Y^d_{ m SM} ight) {\cal C}_{K4}$	$\left(Y^{u}_{_{\mathrm{SM}}} ight)\mathcal{C}_{K4}$	$\left(Y^e_{_{ m SM}} ight) {\cal C}_{K4}$

Phenomenology

Hint For New Physics

There are a few unanswered questions which hint towards presence of New Physics: Neutrino mass, dark matter, matter- antimatter asymmetry...etc.

Experimental Data : Linear electron positron collider (LEP I+II) and Large Hadron Collider (LHC)

Searching for New Physics

Theoretical ways

Adding new particle(s)

- With the same SM gauge symmetry.
- Enlarge the SM gauge symmetry.

Experimental ways

Detection of a new physics particle

either directly or indirectly.

Searching for New Physics

Theoretical ways

Adding new particle(s)

- With the same SM gauge symmetry.
- Enlarge the SM gauge symmetry.

Experimental ways

Detection of a new physics particle

either directly or indirectly.

Effective Field Theory: Solution to problems

with Wilson Coefficients. EFT - Describe new physics in terms of Higher Dimensional Operators (HDO) each supplemented

 $Q^{(n)} =$ effective operators $C^{(n)} =$ Wilson coefficients

Standard Model Effective Field Theory

Using SM as low energy theory, the high energy theory is expressed in terms of effective operators constructed with SM fields and symmetry.

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \sum_{i} C_i^{(5)} \mathcal{Q}_i^{(5)} + \frac{1}{\Lambda^2} \sum_{i} C_i^{(6)} \mathcal{Q}_i^{(6)} + \dots$$

 $Q^{(n)} =$ SMEFT Warsaw Basis operators $C^{(n)} =$ Wilson coefficients

- SMEFT describes any beyond SM physics lying at cut off Λ .
- At dim- 6, a total of 2499 independent and non-redundant operators are case. constructed with SM fields in a basis called Warsaw Basis in the most general Grzadkowski et. al. JHEP 10(2010)085
- These can be reduced
- assuming different flavor symmetries, CP .
- for instance with single flavor and baryon no. conservation there are 59 operators.

Capturing New Physics effects in Observables

In order to account for deviations in experimental observations of the observables :

* Modifications induced to mass spectrum due to dim-6 effective operators.

Using redefinitions and operators

Modifications in low energy observables due to dim-6

effective operators.

 $\mathscr{G}_{F} = (G_{F})_{SM} \left[1 + \frac{1}{\Lambda^{2}} \left(2C_{HI}^{(3)} v^{2} - C_{LL} v^{2} \right) \right].$

New Physics in Weak mixing angle

Low energy neutrino nucleon scatterings experiments define

$$\begin{split} \widehat{R} &= \frac{\sigma^{\nu NC} - \sigma^{\overline{\nu} NC}}{\sigma^{\nu CC} - \sigma^{\overline{\nu} CC}} &= \frac{1}{2} - \sin^2 \theta_w \, . \\ \mathcal{L}_{\nu q}^{CC} &= \frac{g_2^2}{2M_W^2} \overline{e_L} \gamma^\mu \nu_L \Big(\overline{u_L} \gamma^\mu d_L \Big) + h \cdot c \, . \, , \\ \mathcal{L}_{\nu q}^{NC} &= \frac{g_2^2}{\cos^2 \theta_w M_Z^2} \overline{\nu_L} \gamma^\mu \nu_L \Big(\overline{u_L} \gamma^\mu u_L + \overline{u_R} \gamma^\mu u_R + \overline{d_L} \gamma^\mu d_L + \overline{d_R} \gamma^\mu d_R \Big) \, . \end{split}$$

redefined. Due to inclusion of dim- 6 operators, the couplings of gauge bosons to fermions are

Buchmuller & Wyler Nucl.Phys.B 268 (1986) 621-653

Overview of the modifications

$$O_{NP} = O_{SM} + \sum_{i} \frac{\mathscr{A}_{i}}{\Lambda^{2}} C_{i}.$$

EWPO

Using input parameter scheme $\{\alpha, G_F, M_Z\}$, tree level contributions are calculated.

$$\delta G_F = \frac{G_F}{\Lambda^2} \left(2\nu^2 C_{HI}^3 - \nu^2 C_{II} \right),$$

$$\delta \alpha = \frac{2\alpha g_2 g_1 \nu^2 C_{HWB}}{\left(g_2^2 + g_1^2\right) \Lambda^2},$$

$$\delta m_Z^2 = \frac{1}{2\sqrt{2}} \frac{m_Z^2 C_{HD}}{G_F} + \frac{2^{1/4} \sqrt{\pi \alpha} m_Z}{\Lambda^2} \frac{C_{HWB}}{\Lambda^2}.$$
+

 $\phi^2 \psi^2 D$

Assumed flavor independence

Higgs signal strength

translation, these were converted to Warsaw basis. Murphy (Phys.Rev.D 97 (2018)). These results were given in SILH basis, using basis Tree level contributions to the decay width and production cross-sections from

Q_{HWB}	Q_{HW}	Q_{HB}	Q_{HD}	$Q_{H\square}$	Q_H	
$\left(H^{\dagger}\tau^{I}H\right)W_{\mu\nu}{}^{I}B^{\mu\nu}$	$\left(H^{\dagger}H\right)W_{\mu\nu}{}^{I}W^{I,\mu\nu}$	$\left(H^{\dagger}H ight)B_{\mu u}B^{\mu u}$	$\left(H^{\dagger}\mathcal{D}_{\mu}H\right)^{*}\left(H^{\dagger}\mathcal{D}^{\mu}H\right)$	$\left(H^{\dagger}H\right)\Box(H^{\dagger}H)$	$(H^{\dagger}H)^3$	
Q_{ll}	$Q_{Hq}^{\left(3 ight) }$	$Q_{Hq}^{\left(1 ight) }$	$Q_{Hl}^{(3)}$	$Q_{Hl}^{\left(1\right)}$	Q_{HG}	
$(ar l\gamma_\mu l)~(ar l\gamma^\mu l~)$	$\left(H^{\dagger}i\tau^{I}\overleftarrow{\mathcal{D}}_{\mu}H\right)\left(\bar{q}\tau^{I}\gamma^{\mu}q\right)$	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H ight) \left(ar{q}\gamma^{\mu}q~ ight)$	$\left(H^{\dagger}i\tau^{I}\overleftrightarrow{\mathcal{D}}_{\mu}H\right)\left(\bar{l}\tau^{I}\gamma^{\mu}l\right.)$	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H ight) \left(ar{l}\gamma^{\mu}l~ ight)$	$\left(H^{\dagger}H\right)G_{\mu\nu}{}^{a}G^{a,\mu\nu}$	
Q_{dH}	Q_{uH}	Q_{eH}	Q_{Hd}	Q_{Hu}	Q_{He}	
$(H^{\dagger}H)(\bar{q} \ d \ H)$ +h.c.	$(H^{\dagger}H)(\bar{q}\ u\ \tilde{H})$ +h.c.	$(H^{\dagger}H)$ $(\bar{l} \in H)$ +h.c.	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H\right) \left(\bar{d}\gamma^{\mu}d~ ight)$	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H\right)\left(\bar{u}\gamma^{\mu}u\right.)$	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H ight) \left(ar{e}\gamma^{\mu}e~ ight)$	

Relevant SMEFT dimension-6 operators

CoDEx- Bakshi, Chakrabortty, Patra EPJC 79 (2019) 1, 21

Ω	Θ_2	Θ_1	φ_2	φ_1	Σ	Δ_1	\mathcal{H}_2		\mathcal{S}_2	S	Heavy BSM fields
$(3,3,-\frac{1}{3})$	$(3,2,rac{7}{6})$	$(3,2,rac{1}{6})$	$(3,1,-\tfrac{4}{3})$	$\scriptstyle (3,1,-\frac{1}{3})$	$(1,4,\frac{1}{2})$	(1,3,1)	$(1,2,-\tfrac{1}{2})$	(1,3,0)	(1,1,2)	(1,1,0)	The SM Gauge quantum nos. (Color, Isospin, Hypercharge)
<	<	<	<	<	<	۲	<	<	<	<	Q_H
<i>۲</i>	<	~	<	~	<	<i>۲</i>	~	<	<	<	$Q_{H\square}$
×	×	×	×	x	<	~	~	<	×	×	Q_{HD}
<i>۲</i>	<	<i>۲</i>	<	、	<	<i>۲</i>	、	×	<	×	Q_{HB}
`	۲.	<	×	×	<	<u>،</u>	~	<	×	×	Q_{HW}
×	×	×	×	×	٩	۲	٩	×	×	×	Q_{HWB}
<i>۲</i>	۲	<u>م</u>	<	、	×	×	×	×	×	×	Q_{HG}
×	×	×	×	×	۲	۲	٩	۲	×	×	Q_{eH}
×	×	×	×	×	<	<	٩	۲	×	×	Q_{uH}
×	×	×	×	×	<	<	<	<	×	×	Q_{dH}

11 BSM scenarios

Out of 59 SMEFT operators, 18 operators contribute to EWPO & Higgs signal strength.

Model dependent analysis - Real singlet scalar

$$\mathscr{L}_{S} \supset \frac{1}{2} D_{\mu}SD^{\mu}S - \frac{1}{2}m_{s}^{2}S^{2} - c_{s,a}|H|^{2}S - \frac{\kappa}{2}|H|^{2}S^{2} - \frac{\mu}{3!}S^{3} - \frac{\lambda}{4!}S^{4}.$$

CoDEx Results

Bakshi, Chakrabortty, Patra EPJC 79 (2019) 1, 21

$Q_{H\square}$	Q_H	Effective operator
$-\frac{5c_{S,a}\kappa_S\mu_S}{192\pi^2m_S^4}-\frac{c_{S,a}^2\lambda_S}{32\pi^2m_S^4}+\frac{11c_{S,a}^2\mu_S^2}{384\pi^2m_S^6}-\frac{c_{S,a}^2}{2m_S^4}-\frac{\kappa_S^2}{384\pi^2m_S^2}$	$-\frac{c_{S,a}^2\kappa_S\lambda_S}{32\pi^2m_S^4} + \frac{c_{S,a}^2\kappa_S\mu_S^2}{32\pi^2m_S^6} - \frac{c_{S,a}\kappa_S^2\mu_S}{64\pi^2m_S^4} + \frac{c_{S,a}^3\lambda_S\mu_S}{48\pi^2m_S^6} \\ -\frac{c_{S,a}^3\mu_S^3}{96\pi^2m_S^8} + \frac{c_{S,a}^3\mu_S}{6m_S^6} - \frac{c_{S,a}^2\kappa_S}{2m_S^4} - \frac{\kappa_S^3}{192\pi^2m_S^2}$	Wilson coefficient (SM + S)

Constraints on the
model parametersUniform priors
 $C_{S,a} \{-1,1\}$ TeV
 $\mathcal{K}_{S} \{-4\pi,4\pi\}$ Insensitive
parameters $\mu_{s} \{-1,1\}$ TeV
 $\lambda_{s} \{-4\pi,4\pi\}$

WC space : SMEFT vs BSM

obtained. These correspond to the bounds from the model information. Using the samples of points generated for $c_{s,a}$ and k_s , the distributions for the C_H and $C_{H\Box}$ are

Comparison of the WC space for two classes

0.015

2.8×10⁻⁻

6.8×10

0.015 0.000

3×10⁻⁵

87

https://github.com/effExTeam/SMEFT-EWPO-Higgs

Theoretical constraints

Δ_1 (1,3,1)

$$\begin{split} \mathscr{L}_{\Delta_{l}} \supset \ Tr[(D_{\mu}\Delta_{1})^{\dagger}(D^{\mu}\Delta_{1})] - m_{\Delta_{l}}^{2} \ Tr[\Delta_{1}^{\dagger}\Delta_{1}] - \left\{ \mu_{\Delta_{l}}(H^{T}i\sigma_{2}\Delta_{1}^{\dagger}H) + \ h \cdot c \cdot \right\} \\ - \lambda_{\Delta_{l},1}(H^{\dagger}H) \ Tr(\Delta_{1}^{\dagger}\Delta_{1}) - \lambda_{\Delta_{l},2} \left[\ Tr(\Delta_{1}^{\dagger}\Delta_{1}) \right]^{2} - \lambda_{\Delta_{l},3} \ Tr\left[(\Delta_{1}^{\dagger}\Delta_{1})^{2}\right] - \lambda_{\Delta_{l},4} H^{\dagger}\Delta_{1}\Delta_{1}^{\dagger}H \cdot C \cdot \left\{ H^{\dagger}\Delta_{1}\Delta_{1}\right\} \right] + L_{\Delta_{l},2} \left[\left[Tr(\Delta_{1}^{\dagger}\Delta_{1}) \right]^{2} - L_{\Delta_{l},3} \left[Tr(\Delta_{1}^{\dagger}\Delta_{1})^{2} \right] - L_{\Delta_{l},4} H^{\dagger}\Delta_{1}\Delta_{1}^{\dagger}H \cdot C \cdot C \cdot C \right] \right] + L_{\Delta_{l},2} \left[\left[Tr(\Delta_{1}^{\dagger}\Delta_{1}) \right]^{2} - L_{\Delta_{l},3} \left[Tr(\Delta_{1}^{\dagger}\Delta_{1})^{2} \right] - L_{\Delta_{l},4} H^{\dagger}\Delta_{1}\Delta_{1}^{\dagger}H \cdot C \cdot C \cdot C \right] \right] + L_{\Delta_{l},3} \left[Tr(\Delta_{1}^{\dagger}\Delta_{1}) \right] + L_{\Delta_{l},4} \left[Tr(\Delta_{1}^{\dagger}\Delta_{1}) \right] + L_{\Delta_{l},3} \left[Tr(\Delta_{1}^{\dagger}\Delta_{1}) \right] + L_{\Delta_{l},4} \left[Tr(\Delta_{1}^{\dagger}\Delta_{1}) \right] + L_{\Delta_{l},3} \left[Tr(\Delta_{1}^{\dagger}\Delta_{1}) \right] + L_{\Delta_{l},4} \left[$$

Vacuum stability bounds

Is D6 sufficient?

What are beyond D6?

How to compute beyond D6?

EFT Truncation!

EFT vs Full Theory!

Decoupling!

Effect on Oblique parameters

Parameters representing oblique corrections to propagators of gauge bosons.

$$\mu \bigvee_{V_{i}} p$$

$$\mu \bigvee_{V_{i}} p$$

$$V_{i}V_{i} = \{WW, ZZ, YY, YZ\} or \{W, W_{i}, W_{i}\}$$

$$V_{i}V_{i} = \{WW, ZZ, YY, YZ\} or \{W, W_{i}, W_{i}\}$$

$${}_{i}V_{j} = \{WW, ZZ, \gamma\gamma, \gamma Z\} or\{W_{1}W_{1}, W_{2}W_{2}, W_{3}W_{3}, W_{3}B, BB\}.$$

$$\Pi_{V_i V_j}(p^2) = [\Pi_0 + \Pi_2 p^2 + \Pi_4 p^4 + O(p^6)]_{V_i V_j}$$
$$S = -\frac{4\cos\theta_w \sin\theta_w}{\alpha} \Pi'_{3B}(0),$$
$$T = \frac{1}{\alpha m_W^2} \Big(\Pi_{WW}(0) - \Pi_{33}(0)\Big),$$

$$[\Pi_0 + \Pi_2 p^2 + \Pi_4 p^4 + O(p^6)]_{V_i V_j}.$$

$$S = -\frac{4\cos\theta_{w}\sin\theta_{w}}{\alpha}\Pi'_{3B}(0),$$
$$T = \frac{1}{\alpha m_{W}^{2}} \Big(\Pi_{WW}(0) - \Pi_{33}(0)\Big),$$
$$U = \frac{4\sin^{2}\theta_{w}}{\alpha} \Big(\Pi'_{WW}(0) - \Pi'_{33}(0)\Big).$$

90

Peskin & Takeuchi (PhysRevLett.65.964)

CP Violation may be the game changer: Scalar vs Fermion Precision calculation: Higher loops and RGs will be in high demand	EWPO and Higgs Observables play crucial role to estimate the room left for new physics	Different UV theories can be brought into same footing "SMEFT" — platform for a comparative analysis	Top-Down and Bottom-Up are two complementary aspects of EF	It's a very effective tool specially when new physics is unknown	Effective Field Theory connects physics of different scales	Take home messages
---	--	---	--	--	--	--------------------