The least prime congruent to one modulo n

R. Thangadurai and A. Vatwani

September 10, 2010

Abstract

It is known that there are infinitely many primes $\equiv 1 \pmod{n}$ for any integer n > 1. In this paper, we use an elementary argument to prove that the least such prime satisfies $p \leq 2^{\phi(n)+1} - 1$, where ϕ is the Euler totient function.

1 Introduction

Dirichlet's well known prime number theorem [2] essentially states that, if a and n are relatively prime integers, there exist infinitely many primes in the arithmetic progression $a, a + n, a + 2n, \cdots$. The proof of this theorem is not very elementary [16, 17]. However, many simpler proofs are known for the particular case a = 1 [3, 4, 5, 10, 12, 13, 14, 15, 19].

Linnik [8, 9] proved that, if (a, n) = 1, there are absolute constants c_1 and c_2 , such that the least prime $\equiv a \pmod{n}$ satisfies $p \leq c_1 n^{c_2}$. His proof employs analytic methods. In 1992, it was proved by Heath-Brown [6] that the value of the constant c_2 could be taken as 5.5. Recently this value was improved to 5.2 by T.Xylouris [20]. The value can further be improved to $c_2 = 2 + \epsilon$, provided the Generalized Riemann Hypothesis is assumed. In a private communication, we learn that J. Oesterle proved, by assuming Generalized Riemann Hypothesis, that $p \leq 70n(\log(n))^2$, for all n > 1. These results are not elementary and involve a detailed study of zeroes of Dirichlet *L*-functions. Consequently, simpler proofs of bounds in special cases are sought after. Recently, Sabia and Tesauri [13] gave an elementary argument using divisibility properties of the *n*th cyclotomic polynomial to prove the bound $(3^n - 1)/2$ for the least prime $p \equiv 1 \pmod{n}$, $n \geq 2$. The bound $2^n + 1$ for the same was given by S.S Pillai [11], in 1944, using divisibility properties of the numbers $2^n + 1$, but this result did not receive much attention since it was mentioned as a lemma.

In this paper, we build upon the idea employed in [13] to prove the following result.

Theorem 1. For a given integer $n \ge 2$, the least prime $p \equiv 1 \pmod{n}$ satisfies

$$p < 2^{\phi(n)+1} - 1,$$

where $\phi(n)$ is the Euler totient function.

2 Preliminaries

For any integer $n \ge 1$, the *n*-th cyclotomic polynomial can be defined as:

$$\Phi_n(x) = \prod_{m=1,(m,n)=1}^n (x - e^{2\pi i m/n})$$

This is a polynomial of degree $\phi(n)$ whose roots are the primitive *n*-th roots of unity. It is known that $\Phi_n(x)$ is a monic irreducible polynomial over \mathbb{Q} with integer coefficients and that $x^n - 1 = \prod_{d|n} \Phi_d(x)$.

A suitable form for $\Phi_n(x)$ can be obtained using the Möbius function, $\mu(n)$, which is defined as

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1; \\ (-1)^k & \text{if } n > 1 \text{ and } n = p_1 p_2 \cdots p_k \text{ for distinct primes } p_i; \\ 0 & \text{otherwise.} \end{cases}$$

It can be seen that μ is a multiplicative function, that is, $\mu(mn) = \mu(m)\mu(n)$ whenever (m, n) = 1. Some of the properties of the Möbius function are stated in the following Lemma.

Lemma 2. ([1, 18]) Let $n \ge 1$ be a given integer. Then we have, a) $\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{otherwise.} \end{cases}$ b) If f and g are two arithmetical functions such that, $f(n) = \sum_{d|n} g(d)$, then

$$g(n) = \sum_{d \mid n} f(d) \mu(n/d)$$

In particular, $n = \sum_{d|n} \phi(d)$ implies that $\phi(n) = \sum_{d|n} \mu(d)n/d$. c) If $f(n) = \prod_{d|n} g(d)$, then

$$g(n) = \prod_{d|n} f(d)^{\mu(n/d)}$$

In particular, $x^n - 1 = \prod_{d|n} \Phi_d(x)$ implies that $\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}$.

We state two more lemmas which will be useful. Their proofs can be found in the references cited.

Lemma 3. ([13]) For any integer $b \ge 2$, the prime factors of $\Phi_n(b)$ are either prime divisors of n or are $\equiv 1 \pmod{n}$. Moreover, if n > 2, any prime divisor of n can divide $\Phi_n(b)$ only to the exponent 1, that is, p^2 does not divide $\Phi_n(b)$.

This lemma was used by Sabia and Tesauri [13] to prove that the least prime $p \equiv 1 \pmod{n}$ satisfies $p \leq (3^n - 1)/2$.

Lemma 4. ([7]) For every integer n > 2, $n \neq 6$, we have,

$$\phi(n) \ge \sqrt{n}$$

Also, we will use the following identity. For $x \in [0, 1)$, we have

$$-\log(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots \le x + x^2 + x^3 + \dots = \frac{x}{1-x}$$
(1)

Theorem 5. For any integers $n \ge 2$ and $b \ge 2$, we have,

$$\frac{1}{2} \cdot b^{\phi(n)} \leq \Phi_n(b) \leq 2 \cdot b^{\phi(n)}$$

Proof. From Lemma 2, we know

$$\begin{split} \Phi_n(b) &= \prod_{d|n} (b^d - 1)^{\mu(n/d)} \\ &= b^{\sum_{d|n} d \cdot \mu(n/d)} \prod_{d|n} \left(1 - \frac{1}{b^d} \right)^{\mu(n/d)} \\ &= b^{\phi(n)} \prod_{d|n} \left(1 - \frac{1}{b^d} \right)^{\mu(n/d)} \end{split}$$

We define

$$S = \frac{\Phi_n(b)}{b^{\phi(n)}} = \prod_{d|n} \left(1 - \frac{1}{b^d}\right)^{\mu(n/d)}$$

Then,

$$\log S = \sum_{d|n} \mu(n/d) \log(1 - b^{-d})$$
(2)

It is enough to show that $\frac{1}{2} \leq S \leq 2$, that is,

$$-\log 2 \le \log S \le \log 2$$

We shall first prove the upper bound:

Case 1. $\mu(n) \ge 0$

By the equation (2),

$$\log S = \mu(n) \log(1 - b^{-1}) + \sum_{d \mid n, d \ge 2} \mu(n/d) \log(1 - b^{-d})$$
$$\leq -\mu(n) \log\left(\frac{b}{b-1}\right) + \sum_{d \ge 2} -\log(1 - b^{-d})$$
$$\leq \sum_{d \ge 2} \left[b^{-d} + \frac{b^{-2d}}{2} + \frac{b^{-3d}}{3} + \cdots \right], \quad (by (1))$$

$$\leq \sum_{d \ge 2} \left[b^{-d} + \frac{b^{-2d}}{2} (1 + b^{-d} + b^{-2d} + \dots) \right]$$
$$= \sum_{d \ge 2} \left[b^{-d} + \frac{b^{-2d}}{2} (1 - b^{-d})^{-1} \right] = \sum_{d \ge 2} \left(\frac{1}{b^d} + \frac{1}{2b^{2d}} \frac{b^d}{b^d - 1} \right)$$
$$\leq \sum_{d \ge 2} \left(\frac{1}{b^d} + \frac{1}{6b^d} \right) = \frac{7}{6} \cdot \frac{1}{b(b-1)}$$
$$\leq \frac{7}{12} < \log 2.$$

Case 2. $\mu(n) < 0$

In this case, $n = p_1 p_2 \cdots p_k$, k being odd. Hence for any prime $p \mid n$, we have $\mu(n/p) = 1$. Let q be the least prime divisor of n. Any divisor of d of n which is $\neq 1$ and not a prime is $\geq q^2$. Now,

$$\begin{split} \log S =& \mu(n) \log(1-b^{-1}) + \sum_{p|n} \mu(n/p) \log(1-b^{-p}) + \sum_{d|n;d\neq 1,p} \mu(n/d) \log(1-b^{-d}) \\ = & -\log((b-1)/b) + \sum_{p|n} \log(1-b^{-p}) + \sum_{d|n;d\neq 1,p} \mu(n/d) \log(1-b^{-d}) \\ \leq & -\log((b-1)/b) + \log(1-b^{-q}) + \sum_{d\geq q^2} -\log(1-b^{-d}) \\ \leq & \log(b/b-1) + \log(1-b^{-q}) + \sum_{d\geq q^2} \frac{b^{-d}}{1-b^{-d}}, \quad (by \ (1)) \\ \leq & \log(b/b-1) + \log(1-b^{-q}) + \sum_{d\geq q^2} \frac{1}{b^{d-1}} \\ = & \log(b/b-1) + \log(1-b^{-q}) + \frac{1}{b^{q^2-2}(b-1)} \\ \leq & \log 2 - \frac{1}{b^q} + \frac{1}{b^{q^2-2}} \\ \leq & \log 2 \ , \ \text{since} \ q^2 - 2 \geq q. \end{split}$$

Thus, the upper bound follows.

Now, for the lower bound, we see that case $\mu(n) \leq 0$ is analogous to the upper bound for the case $\mu(n) \geq 0$. Similarly, the case $\mu(n) > 0$ is analogous to the upper bound for the case $\mu(n) < 0$. Hence, we omit the proof for the lower bound here. This completes the proof.

3 Proof of Theorem 1.

Proof. For a positive integer n, let s(n) denote the square free part of n. Having proved Theorem 5, we observe that, for any integers b > 1 and n > 2; if the

inequality

$$\frac{1}{2} \cdot b^{\phi(n)} > s(n) \tag{3}$$

holds, then $\Phi_n(b) > s(n)$. Using Lemma 3, we can conclude that there exists at least one prime $p \mid \Phi_n(b)$ such that p does not divide n, and hence this prime must be $\equiv 1 \pmod{n}$. Then, $p \mid \Phi_n(b)$ implies that $p \leq \Phi_n(b)$. Using Theorem 5 once again, we obtain,

$$p \le 2 \cdot b^{\phi(n)} - 1.$$

This gives us an upper bound for p.

Theorem 1 gives the closest possible upper bound using this method. In order to prove it, we must put b = 2 in the above discussion and examine the corresponding inequality obtained by putting b = 2 in (1):

$$2^{\phi(n)-1} > s(n). \tag{4}$$

If this inequality holds for all integers $n \ge 2$, then we are done.

From Lemma 4, we know that $\phi(n) \ge \sqrt{n}$, for all integers n > 2 except n = 6. Hence,

$$2^{\phi(n)-1} > 2^{\sqrt{n}-1}$$

for all $n > 2, n \neq 6$. It is enough to prove that $2^{\sqrt{n}-1} > s(n)$, that is,

$$\sqrt{n} - 1 > \frac{\log s(n)}{\log 2}.$$
(5)

Since we know that $n \ge s(n)$, consider the following real valued function:

$$f(x) = \sqrt{x} - 1 - (\log x / \log 2)$$

It can be checked that this is an increasing function for $x > (2/\log 2)^2 \approx 8.325$. The first integer value of x for which this function is positive is 40. This means that the function takes positive values for all integers $n \ge 40$. Thus,

$$2^{\phi(n)-1} \ge 2^{\sqrt{n-1}} > n \ge s(n)$$
, for all integers $n \ge 40$.

This proves Theorem 1 for integers $n \ge 40$. When n = p, a prime, $\Phi_p(2) = 2^p - 1 > p$ for all primes $p \ge 2$.

Now, we shall prove that Theorem 1 is true for all composite numbers $n \leq 39$. It is enough to show that

$$\Phi_n(2) > n \tag{6}$$

holds for integers n, with $2 \le n \le 39$. This can be checked by computing the

values of $\Phi_n(2)$ for these integers. We list the results as follows:

n	$\Phi_n(2)$	n	$\Phi_n(2)$	n	$\Phi_n(2)$	n	$\Phi_n(2)$
4	5	15	151	24	241	33	599479
6	3	16	257	25	1082401	34	43691
8	17	18	57	26	2731	35	8727391
9	73	20	205	27	262657	36	4033
10	11	21	2359	28	3277	38	174763
12	13	22	683	30	331	39	9588151
14	43			32	65537		

It can be seen that (6) holds for all n such that $2 \le n \le 39$, except for n = 6. For n = 6, Theorem 1 easily follows with p = 7.

This proves Theorem 1.

Acknowledgement. We are thankful to Prof. J. Oesterle for having a fruitful discussion on this problem.

References

- T. M. Apostol, Introduction to Analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.
- [2] G. L. Dirichlet, Dirichlet Werke, G. Reimer, Berlin, 1889.
- [3] T. Estermann, Note on a paper of A. Rotkiewicz, Acta Arith. 8 (1963) 465–467.
- [4] H. Gauchman, A special case of Dirichlet's theorem on primes in an arithmetic progression, *Math. Mag.* 74 (2001) 397–399.
- [5] H. Hasse, Vorlesungen über zahlentheorie. 2, Auflage, Springer-Verlag, Berlin, 1964.
- [6] D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, *Proc. London Math. Soc.* 64 (1992) 265–338.
- [7] D. G. Kendall and R. Osborn, Two Simple Lower Bounds for Euler's Function, Texas J. Sci. 17 (1965).
- [8] Y. V. Linnik, On the least prime in an arithmetic progression I. The basic theorem, *Rec. Math. (Mat. Sbornik)* N. S. 15 (1944) 139–178.
- [9] _____, On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenomenon, *Rec. Math. (Mat. Sbornik)* N. S. **15** (1944) 347– 368.

- [10] I. Niven and B. Powell, Primes in certain arithmetic progressions, this MONTHLY 83 (1976) 467–469.
- S. S. Pillai, On the smallest primitive root of a prime, J. Indian Math. Soc. N. S. 8 (1944) 14–17.
- [12] A. Rotkiewicz, Démonstration arithmétique de lexistence dune infinité de nombres premiers de la forme nk+1, L Enseign. Math. 7 (1961) 277–280.
- [13] J. Sabia and S. Tesauri, The least prime in certain arithmetic progressions, this MONTHLY 116 (2009) 641–643.
- [14] I. Schur, über die existenz unendlich vieler primzahlen in einigen speziellen arithmetischen progression, *Sitzber. der Berliner Math. Ges.* 11 (1912) 40– 50, Reproduced in *Gesammelte Abhandlungen II*, eds., A. Brauer and H. Rohrbach, Springer-Verlag, Berlin, 1973, 1-11.
- [15] N. Sedrakian and J. Steinig, A particular case of Dirichlets theorem on arithmetic progression, *LEnseign. Math.* 44 (1998) 3–7.
- [16] A. Selberg, An elementary proof of Dirichlet's theorem about primes in an arithmetic progression, *Ann. of Math.* **50** (1949) 297–304.
- [17] J. P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, vol.7, Springer-Verlag, New York, 1977.
- [18] R. Thangadurai, On the coefficients of cyclotomic polynomials, in Cyclotomic fields and related topics (Pune, 1999), Bhaskaracharya Pratishthana, Pune, 2000, 311–322.
- [19] J. Wendt, Elementarer beweis des satzes, dass in jeder unbegrenzten arithmetischen progression my + 1 unendlich viele primzahlen vorkommenm, J. Reine und Angew andte Math. 115 (1895) 85–88.
- [20] T. Xylouris, Uber die Linniksche Konstante, Ph.D. thesis, Diplomarbeit, Universität Bonn, 2009, available at http://arxiv.org/pdf/0906.2749.

R. Thangadurai, School of Mathematics, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019, INDIA thanga@hri.res.in

A. Vatwani, IIIrd year Int.M.Sc, IISER, Central tower, Sai Trinity building, Pashan circle, Pune 411021, INDIA a.vatwani@iiserpune.ac.in