Manoj K. Yadav Assoc. Prof.  G HarishChandra Research Institute Chhatnag Road, Jhunsi Allahabad  211 019


Home  Abridged CV  Research  Publications 
Research Papers:
(Tushar K. Naik, Rahul D. Kitture) Finite $p$groups of nilpotency class $3$ with two conjugacy class sizes. (24 pages, Communicated). Available at arXiv.org.
(Sumana Hatui, L. R. Vermani) The Schur multiplier of central product of groups, Journal of Pure and Applied Algebra (10 pages, accepted for publication). Available at arXiv.org.
(Tushar K. Naik) Finite $p$groups of conjugate type $\{1, p^3\}$. J. Group Theory (18 pages, Ahead of print (see journal's webpage)). Available at arXiv.org.
(Rahul D. Kitture) Note on Caranti's method of construction of Miller groups. Monatsh. Math. (15 pages, Ahead of print (see journal's webpage)). Available at arXiv.org.
(Marco Ruscitti, Leire Legarreta) Noninner automorphisms of order $p$ in finite $p$groups of coclass 3, Monatsh. Math. Vol. 183 (2017), 679697. Available at arXiv.org.
(Silvio Dolfi) Finite groups whose nonlinear irreducible characters of the same degree are Galois conjugate, J. Algebra, Vol. 452 (2016), 116. Available at arXiv.org.
Classpreserving automorphisms of finite $p$groups II, Israel J. Math., Vol. 209 (2015), 355396. Available at arXiv.org.
(Pradeep K. Rai) On $\CYRSH$rigidity of group of order $p^6$, J. Algebra, Vol. 428 (2015), 2642. Available at arXiv.org.
(Rajat K. Nath) On the probability distribution associated to commutator word map in finite groups, Internat. J. Algebra and Comput., Vol 25 (2015), 11071124. Available at arXiv.org.
(Rajat K. Nath) Some results on relative commutativity degree, Rend. Circ. Mat. Palermo (2), Vol. 64 (2015), 229239. Available at arXiv.org.
(Vivek K. Jain, Pradeep K. Rai) On finite $p$groups with abelian automorphism group. Internat. J. of Algebra Comput., Vol. 23, No. 5 (2013) 1063–1077. Available at arXiv.org.
On finite $p$groups whose central automorphisms are all class preserving. Comm. Algebra, Vol. 41, No. 12 (2013), 4576  4592. Available at arXiv.org.
On subgroups generated by small classes in finite groups. Comm. Algebra, Vol. 41, No. 9 (2013), 3350  3354. Available at arXiv.org.
(Valeriy G. Bardakov, Andrei Y. Vesnin) Class preserving automorphisms of unitriangular groups, Internat. J. Algebra Comput., Vol. 22 (2012), no. 3, 1250023, 17 pp. Available at arXiv.org.
(Vivek K. Jain) On finite $p$groups whose automorphisms are all central, Israel J. Math. Vol. 189 (2012), 225  236. Available at arXiv.org.
(I. B. S. Passi, M. Singh) Automorphisms of abelian extensions, J. Algebra Vol. 324 (2010), 820  830. Available at arXiv.org.
On finite capable $p$groups of class 2 with cyclic commutator subgroups (preprint, 2010). Available at arXiv.org.
On central automorphisms fixing the center elementwise. Comm. Algebra, Vol. 37, No. 12 (2009), 4325  4331. Available at arXiv.org.
On automorphisms of some finite $p$groups. Proc. Indian Acad. Sci. (Math. Sci.), Vol. 118, No. 1 (2008), 111. Available at arXiv.org.
On automorphisms of finite $p$groups. J. Group Theory, Vol. 10 (2007), 859866.
Class preserving automorphisms of finite $p$groups. J. London Math. Soc., Vol. 75 (2007), 755772.
(Everett C. Dade) Finite groups with many product conjugacy classes. Israel J. Math., Vol. 154 (2006), 2949.
(L. R. Vermani) On automorphisms of some $p$groups. Proc. Japan Acad., Vol. 78, Ser. A, (2002), 4650.
(L. R. Vermani) "Hasse principle" for groups of order $p^4$. Proc. Japan Acad., Vol. 77, Ser. A, (2001), 9598.
(L. R. Vermani) "Hasse principle" for extraspecial $p$groups. Proc. Japan Acad., Vol. 76, Ser. A, (2000), 123125.
Expository Papers:
(Rahul D. Kitture) Finite pgroups with abelian automorphism groups  A survey (25 pages, Communicated). Available at arXiv.org.
Central quotient versus commutator subgroup of groups, Algebra and its Applications, Springer Proceedings in Mathematics & Statistics 174 (2016), 183194, (DOI 10.1007/9789811016516_10). Available at arXiv.org.
Class preserving automorphisms of finite $p$groups  A Survey. Proc. Groups St. Andrews (Bath) 2009, LMS Lecture Note Series 388 (2011), 569  579 Available at arXiv.org.